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Abstract
The Motion Tomography (MT) algorithm maps an ocean flow field using sporadically measured positions of underwater 
vehicles. A key step of the MT algorithm, called trajectory tracing, is to estimate the underwater trajectories of the vehicles 
based on the estimated flow field and known start and end positions. This paper extends the MT algorithm by developing a set 
of analytical formulas to compute the underwater trajectories. These analytical formulas enable us to study the convergence 
of the MT algorithm, and we prove that the estimated trajectory and measured trajectory end positions converge as the MT 
algorithm proceeds. Experimental results are collected on the Georgia Tech Miniature Autonomous Blimps to demonstrate 
that the MT algorithm can be applied to reconstruct a wind field in an indoor environment using nothing but sparse position 
measurements. We further validate the MT algorithm using data collected by an underwater glider deployed in the South 
Atlantic Bight. We demonstrate MT is able to reconstruct the ocean flow field using recorded glider surfacing positions and 
improve the spatial distribution of a dead reckoning flow field map.

Keywords  Mapping · Underwater vehicle · Nonlinear System identification · Flow field estimation · Trajectory tracing

1  Introduction

Autonomous Underwater Vehicles (AUVs) are mobile plat-
forms that are regularly tasked with performing missions in 
difficult or inaccessible underwater environments (Dunba-
bin and Marques 2012; Smith et al. 2010). Localization is 
essential, not only for the safe operation of the AUV, but also 
for the effectiveness of the mission and the scientific value 
of the collected data. However, underwater localization is 
a challenging research problem due to the lack of Global 
Positioning System (GPS) signals underwater, which raises 
the need for an accurate flow field map to assist localiza-
tion. Numerous path planning strategies for AUVs depend 

on environmental prediction, (Panda et al. 2020). An Acous-
tic Doppler Current Profiler sensor was used to improve the 
AUV localization in Arnold and Medagoda (2018) and Med-
agoda et al. (2015). Some algorithms use ocean model pre-
dictions to estimate the AUV trajectory underwater (Petrich 
et al. 2009; Song and Mohseni 2014, and in Liang et al. 
2018) an ocean current observer was proposed for under-
water trajectory tracking. However, existing geophysical 
ocean models usually have coarse resolution relative to the 
scales of AUV deployment, due to the high computational 
complexity of large-scale models. Limited spatial resolution 
makes the dynamic flow estimate inaccurate, which leads to 
a difference between the actual and estimated trajectories.

There has been a growing interest in using mobile sen-
sors to estimate the flow field (Lynch et al. 2008; Cortés 
2009). Different algorithms have leveraged the effect of 
current on the AUV motion response, supported by sensors 
onboard the vehicles (Randeni et al. 2017; Merckelbach 
et al. 2008). Lee et al. developed a specialized Gaussian 
process regression scheme that exploits the incompress-
ibility of ocean currents (Lee et  al. 2019). Rogowski 
used an AUV-mounted Doppler Velocity Log to observe 
the flow velocity field (Rogowski and Terrill 2015). Bai 
designed a nonlinear observer for the motion of vehicles 
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to identify the unknown parameters of a vector field (Bai 
2018). A novel method, called Motion Tomography (MT) 
was proposed in our previous work (Chang et al. 2017). 
When the position of a vehicle is measured, the differ-
ence between the actual position and the predicted posi-
tion is called the motion integration error. Such error is 
caused by the difference between a flow model and the 
real flow along the trajectories of the vehicles. The MT 
algorithm was designed to use the motion integration error 
to compute a flow field map that improves the flow model. 
Hence, the MT algorithm can achieve better spatial reso-
lution compared to a geophysical ocean model. The MT 
algorithm can be categorized as one type of tomography 
algorithm that formulates and solves an inverse prob-
lem. Hence it bears similarities with other tomography 
algorithms. In particular, seismic tomography leverages 
acoustic signals that penetrate an elastic media to measure 
physical parameters of the media. A central piece of the 
seismic tomography algorithm is the tracking of the path 
of acoustic signals. Correspondingly, in MT, one needs 
to trace the trajectories of the AUVs. For seismic tomog-
raphy, the path followed by acoustic signals propagating 
through a media is computed based on Fermat’s law (Zhou 
and Greenhalgh 2005; Rawlinson et al. 2008). However, 
this physical law does not hold for MT because the AUVs 
do not follow the minimum path like an acoustic signal.

To track the underwater trajectory of AUVs, Chang et al. 
(2017) incorporated trajectory tracing. A first order particle 
model was used to numerically compute the vehicle trajec-
tories in the forward step of the MT algorithm, given the 
knowledge of a flow field. Then the flow field estimate was 
updated using Kaczmarz’s method in the inverse step.

Furthermore, we assumed in our previous work (Ouerghi 
and Zhang 2018) that the MT-estimated final position con-
verges to the measured final position as the MT algorithm 
proceeds. Based on that assumption, we extended the MT 
algorithm with a new step to incorporate measured travel 
time along with the traced trajectory, computed by the MT 
algorithm. This step improved the accuracy of flow estimate 
without changing the traced trajectory. We introduced time 
integration error as the difference between the measured 
travel time and the predicted travel time and we updated the 
AUV predicted speed iteratively until the time integration 
error converged to zero.

In this paper, we introduce a novel, analytical approach to 
trajectory tracing and we prove that the estimated final posi-
tion converges to the measured final position. Further, we 
use the measured travel time in the trajectory tracing part of 
the MT algorithm rather than using it in a separate iteration 
step as we did in Ouerghi and Zhang (2018). This guaran-
tees that the predicted travel time is equal to the measured 
travel time when the MT algorithm proceeds and allows us 
to eliminate the second step.

As trajectory tracing in Chang et al. (2017) and Ouerghi 
and Zhang (2018) was performed using numerical simula-
tion, this causes difficulty in analyzing the reduction of MT 
error through the trajectory tracing algorithm. In this paper, 
we derive an analytical solution for the trajectory tracing 
algorithm. The derived formula can replace the use of a 
numerical simulator in the forward step of MT. We discre-
tize the AUV trajectory and study all the different cases of 
cell crossings under the assumption that the AUV velocity is 
constant in each grid cell. This allows us to group the adja-
cent cells into segments based on the different cell-crossing 
cases. Finally, we fuse the underlying segments to compute 
each AUV trajectory. The analytical expression of traced 
trajectories generates an explicit analytical formula for the 
MT error. When combined with the formula for flow estima-
tion in the inverse step, the new trajectory tracing formula 
allows us to prove the convergence of the MT error to zero, 
which means that the average estimated flow along the tra-
jectory converges to the average true flow, as the number 
of iterations increases for the MT algorithm. The trajectory 
tracing formula and the associated convergence proof was 
not achieved in our previous work in Chang et al. (2017).

In addition, we present experimental evidence for MT 
using the Georgia Tech Miniature Autonomous Blimp (GT-
MAB) (Cho et al. 2017) to map a wind field generated by a 
bladeless Dyson fan. The GT-MAB traveling in a wind field 
has similar dynamics to an AUV traveling in an ocean flow 
field. The experimental result shows that the streamlines 
of the MT-estimated wind field align with the numerically 
simulated ideal wind field in Chou et al. (2015).

Further, we validate the MT algorithm using data col-
lected by an underwater glider deployed in the South Atlan-
tic Bight. We show that the MT estimate flow field map has 
a better spatial distribution compared to a dead reckoning 
flow field map.

The MT algorithm can contribute to more effective and 
precise guidance of AUVs. The work presented in this paper 
will also help researchers to solve other types of inverse 
problems by providing a new insight to understand the rela-
tionship between the flow estimation and the trajectory trac-
ing mechanism. The analytical solution, which frames the 
nonlinear terms in the tomography problem, may promote 
further applications of the MT algorithm in more generic 
inverse problems.

The rest of the paper is organized as follows. In Sect. 2, 
we introduce the problem formulation and MT algorithm. 
In Sect. 3, we study the trajectory tracing mechanism and 
provide an analytical solution for travel time and AUV 
position. We derive the MT error dynamics and analyze the 
convergence of the MT algorithm in Sect. 4. A demonstra-
tion of the MT algorithm is conducted in Sect. 5 using data 
collected from lab experiments on the GT-MAB flying in 
a wind field. In Sect. 6 the MT algorithm is validated by 
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reconstructing an ocean flow field using data collected by 
an underwater glider deployed in the South Atlantic Bight. 
Finally, a summary of the paper and future work is given in 
Sect. 7 .

2 � Problem setup for motion tomography

Consider the AUV horizontal position r(t) ∈ ℝ
2 subject to 

the ambient flow F̃ = F̃(r(t)) ∈ ℝ
2 . We define with S(t) ∈ ℝ

2 
the control velocity without flow. Assuming that the AUV 
motion is a first-order particle model, the net velocity Ṽ(t) 
is a combination of the control velocity and the flow veloc-
ity: Ṽ(t) = S(t) + F̃(r(t)) . The AUV final position ̃r(ttot) ∈ ℝ

2 
satisfies:

where r0 ∈ ℝ
2 is the initial position and ttot is the total travel 

time. We simplify the problem formulation by making the 
following assumption.

Assumption 1  The control velocity S(t) is known and the 
flow field is time-invariant during t = [0, ttot].

Remark 1  As the travel time interval ttot is typically several 
hours, the difference between the true and the assigned con-
trol velocity is usually negligible. Further, we can reduce 
ttot such that the error caused by a time-varying flow field 
is minimal. Thus the assumption usually holds for realistic 
AUV applications, see Chang et al. (2017).

Suppose F(r) is an initial estimate of the true flow field 
F̃(r) , then the predicted final position r(ttot) is obtained as 
follows:

2.1 � The MT problem

Given that the true position of an AUV is available only at 
times t0 and ttot and the true flow F̃(r) is unknown, an offset 
between the estimated final position r(ttot) and the measured 
final position r̃(ttot) is observed. As in Chang et al. (2017), 
this offset is named the motion integration error, and is 
defined by d = r̃(ttot) − r(ttot) . Using equations (1) and (2) 
results in a relationship between the MT error d and the 
integration of the difference between the true and the esti-
mated flow:

(1)r̃(ttot) = r0 + ∫
ttot

0

(
S(t) + F̃(r(t))

)
dt

(2)r(ttot) = r0 + ∫
ttot

0

(S(t) + F(r(t)))dt

Our goal is to create a map of the flow field by computing 
an estimate of the flow field F such that d = 0 . Consider an 
operational domain D , we discretize D into P=n×n grid 
cells with Ck referring to the kth cell traversed by the AUV 
while following the estimated trajectory, see Fig.1. We 
assume the control velocity and the flow field within Ck is 
constant and we denote the estimated flow by Fk = [Fk

x
,Fk

y
]⊤ , 

tk the travel time spent in cell Ck and G denotes the ordered 
set of cells that the AUV crossed, G = {C1,⋯ ,Cf } , where 
f is the total number of crossed cells, C1 is the first cell and 
Cf  is the last cell crossed by the AUV. Hence, the AUV final 
position rf  follows:

Let � = [F1,⋯ ,Fn×n]⊤ be the flow field estimate, then d 
follows:

The MT inverse problem is to solve the MT error equation 
for � . We propose in this section an iterative solution to 
estimate the flow field. Let k be the index of cells crossed by 

(3)d = ∫
ttot

0

(
F̃(r(𝜏)) − F(r(𝜏))

)
d𝜏.

(4)rf = r0 +

f∑
k=1

tk
(
Sk + Fk

)
.

(5)d = r̃(ttot ) − rf (�).

Fig. 1   The actual (the solid red line) and predicted (the purple dashed 
line) AUV trajectories are displayed in a discretized domain (color 
figure online)
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the AUV trajectory, from the starting position to the end 
position. We refer to the AUV position in cell Ck on the ith 
iteration with rk

i
= [xk

i
, yk

i
]⊤ , the AUV velocity as 

Vk
i
= [Vk

x,i
,Vk

y,i
]⊤ and the predicted flow Fk

i
= [Fk

x,i
,Fk

y,i
]⊤.

2.2 � MT solution

The AUV trajectory � has a non-linear dependence on the 
flow field. The flow F(r(t)) depends on the AUV position r(t) 
and the MT equation (5) is nonlinear. Furthermore, the MT 
inverse problem Eq. (5) is under-determined and non dif-
ferentiable. Thus, the corresponding solution is nonisolated. 
We define F∗ as the set of solutions:

Assuming that the flow estimate �i is close to the true flow 
� and the travel time tk

i
 is constant, the gradient of the AUV 

position with respect to flow ∇rk
i
 can be approximated as 

follows:

Let Ti = [t1
i
, t2
i
, ..., t

f

i
] be a vector containing times spent by 

the AUV in the visited cells in iteration i and 
‖Ti‖2 = ∑f

k=1
(tk
i
)2 . By applying the technique proposed in 

Meyn (1983), then an approximate of the inverse of ∇rf
i
 as �

∇r
f

i
(�i)

�−1

=
1

‖Ti‖2∇r
f

i
(�i) , results in:

where 0 < 𝜔 < 1 is a designed parameter that we will define 
in the convergence analysis. The MT algorithm is given as 
Algorithm 1.

The flow update (8) requires the MT error di and the travel 
time Ti . Hence, we need to compute the AUV trajectory in 
the forward step to estimate di and Ti , line 3 in Algorithm 1. 
We establish in the following section a new method to pre-
dict the AUV trajectory, called Trajectory Tracing which 
will compute the travel time vector Ti.

(6)F
∗ = {�∗| r̃f − rf (�∗) = 0}

(7)

�x(tk
i
)

�Fk
x,i

= tk
i
,

�x(tk
i
)

�Fk
y,i

= 0

�y(tk
i
)

�Fk
y,i

= tk
i
,

�y(tk
i
)

�Fk
x,i

= 0.

(8)Fk
i+1

= Fk
i
+ �

tk
i

‖Ti‖2
di,

3 � Trajectory tracing

A numerical simulator was introduced in Chang et al. (2017) 
to implement the forward step in the MT algorithm. The 
simulator constructs a new AUV trajectory at each itera-
tion i based on the predicted flow. The trajectory tracing is 
terminated when the predicted travel time 

∑f

k=1
tk
i
 is equal 

to measured travel time ttot.
In what follows, we derive an analytic expression for the 

predicted AUV trajectory, which will serve as a replacement 
for the numerical simulator used previously in Chang et al. 
(2017). The goal of trajectory tracing in Ck is to compute 
the position rk−1

i
 where the trajectory starts entering Ck , the 

position rk
i
 where the vehicle leaves Ck , and the time tk

i
 that 

the vehicle spends inside Ck . The starting position rk−1
i

 is the 
ending position of the trajectory in the previous cell Ck−1 . 
Our algorithm for trajectory tracing computes the ending 
position rf

i
 iteratively rf

i
= r0 +

∑f

k=1
tk
i
Vk
i
.

Notice we need to estimate the vector of travel time Ti to 
compute rf

i
 . We establish in the following Lemma a recur-

sive formula to compute the ending position rk
i
 in cell Ck and 

the corresponding travel time in all the possible ways that a 
trajectory can cross a single grid cell.

Lemma 1  Consider a single cell Ck ∈ {C1,⋯ ,Cf−1} . Then, 
there exist four different ways of cell crossing. The travel 
time and the AUV position for each case can be computed 
as follows: 

A1	� Case one: tk
i
=

�

Vk
y,i

 and rk
i
 follows: 

A2	� Case two: tk
i
=

�

Vk
x,i

 and rk
i
 follows: 

A3	� Case three: tk
i
= tk

i−1

Vk
x,i−1

Vk
x,i

+
xk−1
i−1

−xk−1
i

Vk
x,i

 and rk
i
 follows: 

(9)xk
i
= xk−1

i
+ �

Vk
x,i

Vk
y,i

, yk
i
= yk−1

i
+ �

(10)xk
i
= xk−1

i
+ �, yk

i
= yk−1

i
+ �

Vk
y,i

Vk
x,i
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A4	� Case four: tk
i
= tk

i−1

Vk
y,i−1

Vk
y,i

+
yk−1
i−1

−yk−1
i

Vk
y,i

 and rk
i
 follows: 

 where � is the grid size and p, q ∈ ℕ are the coordinates 
of the cell Ck in the domain D.
Proof  We use the fact that the AUV trajectory is piece-
wise linear and the AUV crosses two different sides in each 
crossed cell. The symmetry of a rectangular cell limits the 
number of possible cases of cell crossing to four: 2 vertical 
sides × 2 horizontal sides generates 4 combinations. First 
case A1, depicted in Fig. 2, is when the AUV traverses the 
cell through vertical opposite sides i.e. yk

i
− yk−1

i
= � . The 

ordinate yk−1
i

 at iteration i remains equal to yk−1
i−1

 in iteration 
i − 1 , which simplifies the travel time and the AUV position:

(11)xk
i
= xk

i−1
, yk

i
= yk−1

i
+ (p� − xk−1

i
)
Vk
y,i

Vk
x,i

(12)xk
i
= xk−1

i
+ (q� − yk−1

i
)
Vk
x,i

Vk
y,i

, yk
i
= yk

i−1

tk
i
=

�

Vk
y,i

= tk
i−1

Vk
y,i−1

Vk
y,i

yk
i
= yk−1

i
+ �

xk
i
= xk−1

i
+ tk

i
Vk
x,i

= xk−1
i

+ �
Vk
x,i

Vk
y,i

Similarly, case A2 is when �i crosses two vertical sides of 
one cell xk

i
− xk−1

i
= � . For case A3 depicted in Fig. 2, it 

involves the AUV predicted position in Ck−1 . We compute 
tk
i
 as follows:

Hence, the AUV position follows:

The same reasoning applies on case A4. 	�  ◻

Based on Lemma 1, we derive a recursive formula to 
compute rf

i
.

Lemma 2  Consider the final cell Cf  , then the ending position 
follows rf

i
= r

f−1

i
+ (ttot −

∑f−1

k=1
tk
i
)V

f

i
.

Proof  We prove the lemma by induction. Consider r0 and 
given that the initial position is measured, then the induction 
statement is true for k = 0 . Suppose that rk−1

i−1
 is known, then 

rk
i−1

 follows Lemma 1 when the predicted trajectory crosses 
the cell Ck according to one of the four cases of cell cross-
ing. Concerning, Ck = Cf  then rf

i
 follows rf

i
= r

f−1

i
+ t

f

i
V
f

i
 . 

Recall that tf
i
= ttot −

∑f−1

k=1
tk
i
 and that the induction state-

ment implies that the travel time is known for all cells Ck 
with 0 < k < f  , then rf

i
= r

f−1

i
+ (ttot −

∑f−1

k=1
tk
i
)V

f

i
 . 	�  ◻

4 � MT error dynamics

In order to analyze the MT algorithm, we derive in this 
section the change of the AUV trajectory �i as the algo-
rithm evolves from one iteration to the next. For clarity, we 
denote with × the 2-dimensional cross product such that 
Vi × di = dy,iVx,i − Vy,idx,i.

We expand the analysis from one cell to a set of cells. As 
the traced trajectory involves complicated expressions, we 
divide the set of crossed cells Gi into subsets Sj that combine 
different cases of cell crossing. We denote with R1 a seg-
ment Sj that comprises the crossed cells in one column and 
with R2 a segment Sj that comprises the crossed cells in one 
row, see Fig. 11. We use the decomposition into segments to 

tk
i
=

xk
i
− xk−1

i

Vk
x,i

=
xk
i−1

− xk−1
i−1

+ xk−1
i−1

− xk−1
i

Vk
x,i

= tk
i−1

Vk
x,i−1

Vk
x,i

+
xk−1
i−1

− xk−1
i

Vk
x,i

.

yk
i
= yk−1

i
+ tk

i
Vk
y,i

= yk−1
i

+
xk
i
− xk−1

i

Vk
x,i

Vk
y,i

= yk−1
i

+ (p� − xk−1
i

)
Vk
y,i

Vk
x,i

Fig. 2   Illustrations of the four different possible AUV cell crossings. 
Symmetry of a rectangular cell means all crossings may be reduced to 
one of these four cases
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mathematically formulate the MT error dynamics and gen-
eralize the resulting analysis for trajectories with multiple 
segments. We use the segment definition to present the set 
of crossed cells Gi . Let Sj = {Cs,⋯ ,Ce} , we define with 
�
j

i
= re

i
− re

i−1
 the difference between the predicted position 

in the last cell Ce in Sj in iterations i and i − 1 . We derive a 
recursive formula to update �j

i
 after each segment. For clar-

ity, we show the intermediate Lemmas and we present a 
detailed proof for the latter and the following Theorem in 
Appendix.

Theorem 1  Let Sj = {Cs,⋯ ,Ce} and Gi = Gi−1 , �
j

i
 follows:

As the MT problem is underdetermined due to the limited 
number of trajectories, we propose an explicit regularization 
in the following assumption.

Assumption 2  The initial flow Fk
0
 is initially constant in all 

cells Ck and V
x
≤ Vk

x,i
≤ Vx,

V
y
≤ Vk

y,i
≤ Vy ∀i, k , where V

x
,Vx,Vy

,Vy ∈ ℝ.

Remark 2  The proposed regularization allows a smoother 
variation of the predicted flow. We will show in the follow-
ing that a constant initial flow in all cells guarantees that the 
estimated flow is updated in a constant direction. Further-
more, if the flow is initially zero, then the direction of the 
predicted flow is constant in all cells.

The convergence proof comprises three parts: First, we 
compute the direction of the MT error in Lemma 4, Second 
we compare the change of the trajectory when Gi = Gi−1 and 
Gi ≠ Gi−1 , in Lemma 5. Finally we compute bounds on the 
trajectory evolution in Lemmas 6 and 7. For clarity, we show 
the intermediate Lemmas and we present a detailed proof for 
the latter in Appendix. Finally we use the derived Lemmas 
to show the convergence of MT error in Theorem 2.

Theorem  2  Suppose Assumption 2 and 1 are true. Let 
� = max

(
∣
dx,0

dy,0

Vy,0

Vx,0

∣, ∣
dy,0

dx,0

Vx,0

Vy,0

∣
)
 and � =

1

�n
min(∣

V
y

Vy

∣, ∣
V
x

Vx

∣) , 

then the MT error di converges to 0, as i → ∞.

A detailed proof for Theorem 2 is derived in Appendix.

(13)

R1 ∶ �
j

x,i
=

Ve
x,i

Ve
y,i

Vs
y,i

Vs
x,i

�
j−1

x,i
− �

Ve
x,i

Ve
y,i

e�
k=s

(tk
i−1

)2

‖Ti‖2
Vk
i−1

× di−1

Vk
x,i

�
j

y,i
= 0.

R2 ∶ �
j

x,i
= 0

�
j

y,i
=

Ve
y,i

Ve
x,i

Vs
x,i

Vs
y,i

�
j−1

y,i
+ �

Ve
y,i

Ve
x,i

e�
k=s

(tk
i−1

)2

‖Ti‖2
Vk
i−1

× di−1

Vk
y,i

5 � Indoor experiment with GT‑MAB

In this section, we demonstrate the MT algorithm with an 
indoor lab experiment. We use the Georgia Tech Minia-
ture Autonomous Blimp, GT-MAB (Cho et al. 2017), as a 
stand-in for the motion of AUVs. We developed the GT-
MAB as an AUV-alternative for indoor experiments that 
can support research on navigation and control for under-
water vehicles. The blimp has a nonlinear dynamics model 
that incorporates aerodynamic drag. Due to its shape and 
slow speed, the blimp’s motion is highly affected by wind. 
This is similar to the impact of the ocean flow field on 
autonomous underwater vehicles. Hence, there exists a 
striking analogy between the deployment of an AUV under 
a flow field and the flight of the blimp subject to a wind 
field. We exploit this fact to demonstrate the MT algorithm 
using the GT-MAB. We run the GT-MAB on six separate 
flights through a constant wind field, and we save the start 
and end position and the travel time of each flight. For 
the purpose of comparison, we separately use an array of 
ground-based wind sensors to measure the wind field in 
order to establish a ground truth.

5.1 � Measured wind field

The wind source designated for this experiment is a Dyson 
fan. The nature of the experiment requires us to measure a 
very low velocity wind field, and at high spatial resolution. 
This is a difficult technical challenge. Although there exist 
ultrasonic sensors that can measure the underlying wind 
field with high accuracy, they are orders of magnitude more 
expensive than mechanical or hot wire sensors. We use three 
different low-cost sensors to compensate for their deficien-
cies, two hot wire anemometers and one MEMS Flow Sen-
sor. Critically, the hot wire sensors are not sensitive to wind 
direction. To address this issue, we rely on the MEMS flow 
sensor, which is sensitive to wind direction, taking measure-
ments at multiple angles, and we define the direction of the 
wind field as the angle that corresponds to the maximum 
velocity measurement at each point. The wind sensors are 
mounted onto an omnidirectional robot that moves along an 
array of waypoints that covers a domain of [0, 2.5] × [−2, 2] 
meters and takes wind sensor measurements at each point 
from various yaw angles. We averaged measurements binned 
by x-position, y-position, and yaw angle groups to overcome 
the low resolution of wind field direction and the high noise 
in the raw sensor data. This calibration and interpolation 
procedure resulted in the wind field map in Fig 3. The norm 
of the flow varies between 0 − 0.38m∕s.

We notice that the wind sensors can best measure the 
Dyson wind field in the vicinity of the fan, where the wind 
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field is laminar. Therefore, we will use the laminar part of 
wind field as the ground truth to validate the data produced 
by the Motion Tomography algorithm.

5.2 � Experimental setup

A Dyson fan is positioned at x = 2.5 , y = −0.25 on the edge 
of the experiment domain, facing along the negative x axis, 
and set to its maximum wind speed. See Fig. 4. We design 
six different trajectories to capture the wind field profile. 
The GT-MAB follows each trajectory by flying on a fixed 
bearing angle at constant speed, under feedback control from 

an array of OptiTrack motion capture cameras. This motion 
data is not incorporated into the MT algorithm except for 
the very first and last coordinates of the trajectories and the 
elapsed travel times.

In Fig. 5, one trajectory represents the GT-MAB trave-
ling from the top to the bottom of the domain, with heading 
angle � = −90◦ , two others from the bottom to the top with 
heading angle � = 90◦ , and the remaining three from right to 
the left. To run the MT algorithm, we set F = [0, 0]⊤m∕s as 
initial condition and we assume the motion of the GT-MAB 
matches a first order particle model as in (1). We assume that 
the flow is piecewise constant F̃k and we discretize the flow 
field and the domain D by means of an uniform Cartesian 
grid. The size of each cell is 0.25m × 0.25m . In order to 
estimate the control velocity S(t), we measured the average 
GT-MAB speed while flying in the absence of any wind.

Because we are applying the MT algorithm to multiple 
separate trajectories, we update the cells simultaneously 
with the average wind field as follows: Let dh

i
 be the MT 

error of blimp h, th,k
i

 the predicted travel time of blimp h in 
cell Ck at iteration i and N, the number of blimps the wind 
field estimate is adjusted to:

5.3 � Results and analysis

Figure  5 shows the MT-predicted and the OptiTrack- 
measured blimp trajectories. As the MT algorithm 

(14)Fk
i+1

= Fk
i
+

�

N

N�
h=1

t
h,k

i

‖Th
i
‖2 d

h
i
.

Fig. 3   Streamlines (blue lines) of the measured wind field (black 
arrows) computed using data from three wind sensors, from measure-
ments taken across the domain in a grid pattern (color figure online)

Fig. 4   The GT-MAB flight experiment setup. An elevated Dyson fan 
is located near the center of one edge of the domain. The blimp trav-
erses the domain at constant elevation level with the fan

Fig. 5   GT-MAB trajectories with their start and end positions. 
Ground truth trajectories (solid lines) are from motion track data 
while predicted trajectories (dashed lines) are the product of trajec-
tory tracing by the MT algorithm
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penalizes the MT error, we notice that the predicted final 
position converges to the measured final position. Further, 
we can define the trajectory tracing error eh

i
 of trajectory 

h at iteration i as the norm of the difference between the 
measured and the predicted position in the crossed cells 
along the blimp trajectory.

Let �i be the average trajectory tracing error for trajecto-
ries with heading angle � = 180◦ and �i for trajectories with 
heading angles � = ±90◦ , as seen in Fig. 5

Figure 6 shows that the average norm of MT error of 
all the trajectories decreases exponentially, which agrees 
with the MT cost function. We notice that both average 
trajectory tracing errors � and � decrease. However, while 
the trajectory tracing error � decreases exponentially, 
the trajectory tracing error � exhibits an increase in the 
third iteration step and has a higher value compared to � . 
This is due to the nonlinear dynamics of the blimp. The 
shear torque accounts for the blimp getting spun by wind 
when the blimp crosses the wind stream. The resulting 
transient disturbance to heading angle violates the particle 
motion assumption in the trajectory tracing step in the 
motion tomography algorithm. Considering the second set 
of blimp trajectories with a heading angle � = 180◦ , the 
blimp flies along the wind stream and does not experi-
ence the same shear torque. Therefore, the particle motion 
model approximates the blimp dynamics better in this sce-
nario, resulting in a more accurate estimate of the blimp 
trajectory.

(15)eh
i
=
�
k

‖rh,k
i

− r̃h,k‖

Concerning the wind field estimate, the wind sensors cap-
ture the wind field in the vicinity of the fan, where the wind 
speed is maximum. However, the region where the wind 
field has turbulent components in directions other than that 
of the mean wind direction, is represented by measurement 
noise. This is due to the sensitivity of the hot wire sensors 
to flow from any direction perpendicular to its axis. There-
fore, we validate the MT predicted wind map against the 
sensor measured wind map in the region where the wind 
field is laminar. Figure 8 shows that the MT-estimated wind 
vector is aligned with the measured wind vector especially 
in the vicinity of the fan where the wind speed maximum. 
Let n = 10 be the number of cells where the wind field is 

Fig. 6   Decrease of MT error average and evolution of average trajec-
tory tracing errors �i (x-axis aligned trajectories) and �i(y-axis aligned 
trajectories)

Fig. 7   Estimated streamlines (blue lines) and wind field (black 
arrows) produced by the MT algorithm using measured GT-MAB 
start and end positions from six trajectories (color figure online)

Fig. 8   The laminar flow region of the sensor-measured wind field 
(blue) overlayed on the same portion of the MT-estimated wind field 
(red) (color figure online)
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laminar, then the mean absolute error 𝜖 =
∑

k ∣F
k−F̃k ∣

n
 in the 

laminar region is equal to � = 0.07m∕s.
Considering the turbulent regions in the wind map, the 

streamlines of the estimated wind field in Fig. 7 is in good 
agreement with the numerical simulation of the Dyson fan, 
conducted by Chou.et al. in the work (Chou et al. 2015). The 
comparison between Fig. 7 and the simulated wind field in 
Chou et al. (2015) shows that the vortex-like features are 
successfully captured by the MT algorithm and that the dif-
ference between the MT-estimated and the simulated stream 
lines is more noticeable in regions that are relatively far from 
the fan. Recall the correlation between the trajectory and 
the underlying flow, Fig. 5 shows that the blimp trajectories 
cover these regions in one dimension. Therefore, the MT 
algorithm cannot capture the turbulent flow as accurately 
as in the numerical simulation. However, the blimp trajec-
tories intersect in the middle part, which results in higher 
resolution. As the experimental setup does not satisfy the 
assumptions involved in the numerical simulation of the 
Dyson wind field (Chou et al. 2015), the difference between 
the simulated and the experimentally constructed wind field 
is expected.

The MT estimated wind field aligns with both the meas-
ured laminar wind field and with the streamlines of the com-
puted wind field. This demonstrates that the MT algorithm 
can estimate the wind field with sufficient accuracy in the 
regions visited by the GT-MAB without need of prior infor-
mation on the wind field.

6 � Experimental results using underwater 
gliders

Lastly, we validate MT using real experimental data col-
lected by an underwater glider in a time-varying flow field. 
Underwater gliders take advantage of buoyancy and attitude 
to move in a saw-tooth pattern while underwater, sampling 
the water column along the glider trajectory. The glider reg-
ularly comes to the surface of water, operationally every 4–6 
h, to acquire an updated GPS localization, and transmits its 
sensor measurements to shore.

As part of the collaborative effort between the Georgia 
Institute of Technology and the Skidaway Institute of Ocean-
ography, we participated in the underwater glider deploy-
ment by SECOORA (Southeast Coast Ocean Observing 
Regional Association), a coordinated deployment of gliders 
along the US East Coast. During the deployment, one glider 
was deployed in the Gray’s Reef National Marine Sanctu-
ary (GRNMS) to map temperature, salinity, density, dis-
solved oxygen and other scientific data in the area. GRNMS 
is located on the inner shelf of the South Atlantic Bight. The 
flow field is characterized by strong tides; up to 80–90% of the 

cross-shelf and 20–40% of the alongshelf current variation can 
be attributed to the barotropic tide Lee and Brooks (1979). At 
GRNMS, the magnitude of the temporal variation is on the 
order of 0.3 − 0.4m∕s.

We deployed one glider off the coast of Georgia, and navi-
gated with 4 h surfacing intervals. The glider was deployed 
for a station keeping mission. Trajectory of the deployment is 
shown in Fig. 10.

6.1 � Dead reckoning flow field

Let rf  be the glider surfacing position measured by the GPS. 
Let r̃f

0
 be the dead reckoning position, which is an estimate of 

the glider surfacing position based on flow velocity F̄0 and 
the glider control velocity as estimated from measurements 
of compass heading, speed through water, and pitch angle of 
the gilder. The dead reckoning error rf − r̃

f

0
 is equal to the MT 

error at iteration i = 0 . Notice that the estimated heading may 
differ from the actual heading because of the error that may 
come from measurement error of a compass, pitch angle of the 
gilder or piecewise linearization error of the heading in our 
discretization setting. For the sake of simplicity, we assume 
that this difference is negligible and we do not consider it in 
this work.

Further, the dead reckoning flow field is the average flow 
along the glider trajectory, computed as follows:

where T is the travel time. Notice that the dead reckoning 
flow field F̄ is constant along the entire trajectory. Hence 
the dead reckoning flow field does not account for spatial 
changes in the flow field and may differ from the actual flow 
experienced by the glider. We apply the MT algorithm to 
improve the spatial distribution of the dead reckoning flow 
field. As the MT algorithm uses the estimated travel time 
matrix along the glider trajectory, we can estimate the vari-
ation of the flow field using the MT error and the travel time 
matrix weight. Let dh

i
 be the MT error of trajectory h, th,k

i
 the 

predicted travel time of trajectory h in cell Ck at iteration i, 
and N the number of trajectories. The MT flow field estimate 
is computed as follows:

The dead reckoning flow field is the average of dead reckon-
ing errors from all trajectories h that cross cell Ck:

(16)F̄ = F̄0 +
rf − r̃

f

0

T
= F̄0 +

d0

T

(17)Fk
i+1

= Fk
i
+

�

N

N�
h=1

t
h,k

i

‖Th
i
‖2 d

h
i

(18)F̄k = F̄k
0
+

1

N

N∑
h=1

dh
0

Th
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Notice that travel time t
h,k

i

‖Th
i
‖2 in (17) changes from one cell to 

another based on the time spent in the cell, which differs 
from the dead reckoning flow estimate (18) that uses a con-
stant value of 1

T
 for each cell along the trajectory.

6.2 � Underwater glider experiment

We select N = 30 consecutive segments of the glider trajec-
tories from April 04 to April 24, 2018, see Fig. 10. The con-
trol velocity S is obtained by measuring the vertical speed, 
the pitch, and the compass heading of the glider. The average 
speed of the glider is ‖S‖ = 0.3m∕s and the dead reckoning 
flow speed computed using Eq.(16) ranges from 0.47m/s to 
0.02m/s. Hence the glider trajectory was highly disturbed 
by the flow field.

The deployment domain is partitioned into 10 × 10 grid 
cells. We use the dead reckoning flow field as our initial 
value and run MT to refine the spatial distribution of the 
flow field estimate. Figure 9 shows the MT estimated flow 
field in cells visited by the glider trajectory and the dead 
reckoning flow field. We notice that the MT estimated flow 
field mostly aligns with the dead reckoning flow field, but 
the MT flow estimate exhibits higher variation. While The 
dead reckoning flow field is constant along the glider tra-
jectory, the MT flow is adjusted by the travel time matrix. 
Therefore, the dead reckoning flow field is smoother than 
the MT estimate.

Further, we compute the root mean square of the differ-
ence between MT and dead reckoning flow field as e = 0.02 
m/s. The norm of flow difference between the dead reckon-
ing and MT flow field for each cell is illustrated in Fig. 10. 
The figure shows that the difference is greater in cells that 

are frequently crossed by the glider trajectory and less where 
cells that are less frequently visited. Cells that are crossed by 
one trajectory exhibit little difference between the two flow 
fields, while cells that are crossed by multiple trajectories 
show a greater RMS difference between MT and dead reck-
oning. Recall that the dead reckoning flow field in cell Ck is 
the average dead reckoning from all trajectories that cross 
the cell Ck . This results in a higher value of MT error for 
each trajectory that crosses cell Ck . Since the MT algorithm 
adjusts the flow estimate to reduce the MT error, the differ-
ence between the dead reckoning and MT flow in the cells 
that are crossed by multiple trajectories is higher.

Even though Assumptions 1 and 2 are violated, these 
results demonstrate that the MT algorithm is nevertheless 
able construct a map of flow field from experimental data in 
a complex flow environment.  

7 � Conclusions

In this paper, we derived a novel analytical formulation for 
trajectory tracing. Based on this, we studied the MT error 
dynamics and we theoretically proved the convergence of 
MT error. The validation of MT and the effectiveness of 
the algorithms were demonstrated through two experimental 
data sets, an indoor experiment using the GT-MAB and a 
field experiment using an underwater glider. Specifically, 
we showed that MT can be used both to generate a non-
trivial wind flow field map in the absence of a known good 
ground truth, and also to improve the spatial distribution of 
an ocean flow field map starting from an initial estimate. Our 
experimental results show that MT can be used for multiple 

Fig. 9   Estimated flow field (red arrows) produced by MT algorithm 
using measured glider surfacing and diving positions, shown together 
with dead reckoning flow field (blue arrows) (color figure online)

Fig. 10   Colored cells indicate the norm of the flow difference 
between dead reckoning and MT-produced flow for each cell, with 
units in meters per second. Also shown are surfacing positions 
(squares) and estimated trajectories (dashed lines) of the glider during 
the deployment
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practical applications, to produce flow maps with high reso-
lution compared with some traditional methods, especially 
when taking into account the relative cost and complexity of 
the sensing approaches. In our future work, we plan to apply 
the trajectory tracing method to other inverse problems. It 
may also be of interest to incorporate Doppler water cur-
rent profiling or acoustic positioning measurements in the 
optimization cost and apply the model-based flow analysis 
techniques in the MT algorithm. Regularization techniques 
and optimal coverage are also key factors for the accuracy 
of the flow mapping.

Appendix

We derive in the following Lemma an analytic expression for 
the predicted AUV trajectory, which will serve as a replace-
ment for the numerical simulator used previously in Chang 
et al. (2017).

Lemma 3  Let Gi ∩ Gi−1 =
{
C1,⋯ ,Cm

}
 and k ≤ m . Then 

rk
i
− rk

i−1
 can be computed according to one of the four cases:

Proof  In order to simplify the calculations, we define the 
position change in one cell as �k

i
= rk

i
− rk

i−1
 and let 
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‖Ti‖2 di . Suppose the AUV crosses cell Ck according 
to case A1. Hence, yk

i
= yk

i−1
 is constant and xk

i
 varies as 

follows:

From Eq.(23), we obtain the following equality:

and xk
i
 follows:

Let �k−1
x,i

= xk−1
i

− xk−1
i−1

 , xk
i
 follows:

Substituting Vk
i
= Vk

i−1
+ �k

i−1
 yields:

Similarly to case A1, we derive Eq. (20) for case A2. Con-
cerning case A3, the AUV position follows:

From Eq.(24), we obtain at iteration i − 1:

and yk
i
 follows:
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Similarly to case A3, we derive Eq.(22) for case A4. 	� ◻

Based on Lemma 3, we expand the analysis from one 
cell to a set of cells. As the traced trajectory involves com-
plicated expressions, we divide the set of crossed cells Gi 
into subsets Sj that combine different cases of cell cross-
ing. We denote with R1 a segment Sj that comprises the 
crossed cells in one column and with R2 a segment Sj that 
comprises the crossed cells in one row, see Fig11. We use 
the decomposition into segments to mathematically formu-
late the MT error dynamics and generalize the resulting 
analysis for trajectories with multiple segments.

We use the segment definition to present the set of 
crossed cells Gi . Let Sj = {Cs,⋯ ,Ce} , we define with 
�
j

i
= re

i
− re

i−1
 the difference between the predicted posi-

tion in the last cell Ce in Sj in iterations i and i − 1 . We 
derive a recursive formula to update �j

i
 after each segment.

Theorem 3  Let Sj = {Cs,⋯ ,Ce} and Gi = Gi−1 , �
j

i
 follows:

Proof  Given Gi−1 = Gi , then the predicted trajectory crosses 
the same side of each cell, which implies that the AUV tra-
jectory crosses the same set of segments in iterations i and 
i − 1 . First, we consider that the traced trajectory crosses 
n columns and we prove the theorem by induction. Recall 
that a R1 segment S = {Cs,⋯ ,Ce} requires ye

i
− ys−1

i
= � . 

Hence, there are two ways to reconstruct a R1 segment. 
Either the segment is composed of one cell if the cell is 
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crossed according to case A1 S = Ce or the segment contains 
multiple cells in the same row. In this scenario, the AUV 
crosses the first cell Cs according to case A3 then multi-
ple cells according to case A2 and finally the last cell Ce 
according to A4. For instance, the first segment in Fig. 11 is 
represented by case A1, the second segment is composed of 
three cells, etc. For clarity, we consider the scenario when 
the AUV crosses the row according to case A1, hence we 
can use Lemma 3 to compute �1 in one cell. Given the initial 
position r0 is constant, we simplify Eq.(19) with x0

i
= x0

i−1
:

However if the segment includes more than one cell, the 
expression of �1 becomes more complicated. We reformulate 
S
1 = {Cs,⋯ ,Ck,⋯ ,Ce} , where the start cell Cs represents 

case A3, Ck case A2 and the ending cell Ce case A4. Con-
sider Cs and insert �0

x,i
= 0 in Eq.(21):

Concerning cells Ck that are between Cs and Ce , the predicted 
trajectory follows case A2, (20):

(26)�1
x,i

= −
(t1
i−1

)2

‖Ti‖2
V1

i−1
× di−1

V1

y,i

.

y1
i
− y1

i−1
= −

(t1
i−1

)2

‖Ti‖2
V1

i−1
× di−1

V1

y,i

.

Fig. 11   Decomposition of the cells Gi into 5 segments R2 . Each seg-
ment Sq is included in one row and presented with a different color 
(color figure online)
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Finally plugging (21) and (27) in Eq.(22) provides �1
i
 in the 

last cell in segment S1 :

Suppose �j−1
i

 is given and consider �j
i
 corresponding to 

S
j = {Cs,⋯ ,Ce} . Combining Eq.(27) and (21) leads to 

ye−1
i

− ye−1
i−1

:

Inserting (28) in (22) results in �j
x,i

:

If a row is crossed according to case A1, then Cs = Ce and 
Eq.(29) can be reduced to (26). Hence, the induction state-
ment holds for any scenarios. Consider the scenario when 
the AUV trajectory crosses n segments type of R2 , then each 
segment can be composed of one cell if the cell is crossed 
according to case A2 S = Ce or the segment contains mul-
tiple cells in the same column. In this scenario, the AUV 
crosses the first cell Cs according to case A4 then multiple 
cells according to case A1 and finally the last cell Ce accord-
ing to A3. Hence the same reasoning leads to Eq.(25). 	
� ◻

We show in the following that the MT error di has a con-
stant direction ∀i when the flow field is initially constant.

Lemma 4  Suppose Assumption 2  is true ,  then 
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i

− yk−1
i−1

).

�1
x,i

= −
(te
i−1

)2

‖Ti‖2
Ve
i−1

× di−1

Ve
y,i

−
Ve
x,i

Ve
y,i

(ye−1
i

− ye−1
i−1

)

= −
Ve
x,i

Ve
y,i

e�
k=1

(tk
i−1

)2

‖Ti‖2
Vk
i−1

× di−1

Vk
x,i

(28)(ye−1
i

− ye−1
i−1

) =

e−1�
k=s

(tk
i−1

)2

‖Ti‖2
Vk
i−1

× di−1

Vk
x,i

−
Vs
y,i

Vs
x,i

�
j−1

x,i
.

(29)

�
j

x,i
= −

(te
i−1

)2

‖Ti‖2
Ve
i−1

× di−1

Ve
y,i

−
Ve
x,i

Ve
y,i

(ye−1
i

− ye−1
i−1

)

=
Ve
x,i

Ve
y,i

Vs
y,i

Vs
x,i

�
j−1

x,i
− �

Ve
x,i

Ve
y,i

e�
k=s

(tk
i−1

)2

‖Ti‖2
Vk
i−1

× di−1

Vk
x,i

Assuming that �i = (1 − �
∑k=f

k=1

∑i−1

j=0

tk
i
tk
j

‖Tj‖2 �j) and di = �id0 , 

let us consider the MT error for i + 1:

Finally, insert Eq.(31) in the flow update (8) simplifies 
Vk
i
× di to:

	�  ◻

In order to relate the change of the AUV predicted 
position when Gi = Gi−1 and Gi ≠ Gi−1 , we define tm as the 
time when �i crosses new cell Cm , r̂f

i
= ∫ ttot

0
Vi(t)dt , where 

V(t) = Vk
0
= V0 for t ∈ [tm, ttot] and rf

i
 the predicted final 

position if Gi = Gi−1 . Apply Lemma 4 and Eq.(8) results in: 
∫ tm

0
Vk
i
(t) − Vk

i−1
(t)dt = �2d0 . Suppose Gi includes new cells 

for t ∈ [tm, ttot] , then Vk
i
(t) = V0 for t ∈ [tm, ttot]:

We define

so that

Lemma 5  Suppose that Assumption 2 is true, �1 ≥ 0 and 
�j ≥ 0 hold for all j < i . Then

(30)

d1 = r̃f − r0 −

k=f�
k=1

tk
1
(Vk

0
+ 𝜔

tk
0

‖T0‖2
d0)

= (1 − 𝜔

k=f�
k=1

tk
1
tk
0

‖T0‖2
)d0 = 𝜅1d0

(31)

di+1 = r̃f − r0 −

k=f�
k=1

tk
i+1

(Vk
0
+ 𝜔

i�
j=0

tk
j

‖Tj‖2
dj)

= (1 − 𝜔

k=f�
k=1

i�
j=0

tk
i+1

tk
j

‖Tj‖2
𝜅j)d0 = 𝜅i+1d0

Vk
i+1

× di+1 = (V0 +

i�
j=0

tk
j

‖Tj‖2
�j)d0) × �i+1d0

= Vk
0
× di+1

(32)

r̂
f

i
− r

f

i−1
= ∫

tm

0

�
Vk
i
− Vk

i−1

�
(t)dt

+ ∫
ttot

tm
V0 − Vk

i−1
(t)dt

= (𝛼2 − ∫
ttot

tm
𝜔

i−1�
j=0

f�
k=m

tk
j

‖Tj‖2
𝜅jdt)d0.

�1 = �2 − ∫
ttot

tm
�

i−1�
j=0

f�
k=m

tk
j

‖Tj‖2
�jdt

(33)r̂
f

i
− r

f

i−1
= 𝛼1d0.
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Proof  Consider the scenario when Gi = Gi−1 and let 
�3 = ∫ ttot

tm
�

tk
i−1

‖Ti−1‖2 �i−1dt . Then rf
i
− r

f

i−1
 follows:

Since we have assumed that �1 ≥ 0 , then ‖r̂f
i
− r

f

i−1
‖ = 𝛼1‖d0‖ 

holds. Further,

i m p l i e s  �3 ≥ − ∫ ttot

tm
�
∑i−1

j=0

∑f

k=m

tk
j

‖Tj‖2 �jdt  .  T h u s 

0 ≤ �1 = �2 − ∫ ttot

tm
�
∑i−1

j=0

∑f

k=m

tk
j

‖Tj‖2 �jdt ≤ �2 + �3 . Com-

bining (35) and (32) results in:

	�  ◻

We derive bounds on the trajectory evolution after the 
estimated flow is updated in the following Lemma.

Lemma 6  Suppose Gi = Gi−1 and Assumption 2 is true. Let 
� = max

(
∣
dx,0

dy,0

Vy,0

Vx,0

∣, ∣
dy,0

dx,0

Vx,0

Vy,0

∣
)
 and � =

1

�n
min(∣

V
y

Vy

∣, ∣
V
x

Vx

∣) , 

then an upper bound for ‖�n−1
i

‖ follows: 

R1	�

R2	�
Proof  Since Eq.(29) depends on 

Ve
x,i

Ve
y,i

Vs
y,i

Vs
x,i

 , we show first that 
Ve
x,i

Ve
y,i

Vs
y,i

Vs
x,i

 is bounded. Notice that 
Vk
x,i

Vk
y,i

−
dx,0

dy,0
=

Vk
x,i
dy,0−V

k
y,i
dx,0

Vk
y,i
dy,0

 and 
Vk
x,i

Vk
y,i

−
Vx,0

Vy,0

=
Vk
x,i
Vy,0−V

k
y,i
Vx,0

Vk
y,i
Vy,0

 .  Hence  i f  dx,0

dy,0
≤ Vx,0

Vy,0

 ,  t hen 
dx,0

dy,0
≤ Vk

x,i

Vk
y,i

≤ Vx,0

Vy,0

 a n d  v i c e  v e r s a .  T h e r e fo r e , 

(34)‖r̂f
i
− rfi−1‖ ≤ ‖rfi − rfi−1‖

(35)

r
f

i
− r

f

i−1
= ∫

tm

0

(
Vk
i
− Vk

i−1

)
(t)dt

+ ∫
ttot

tm

(
Vk
i
− Vk

i−1

)
(t)dt

= (�2 + �3)d0.

Vk
i
= V0 + �

i−1�
j=0

f�
k=m

tk
j

‖Tj‖2
�jd0

‖r̂f
i
− r

f

i−1
‖ ≤ (𝛼2 + 𝛼3)‖d0‖ = ‖rf

i
− r

f

i−1
‖

(36)

‖�n−1
i

‖ ≤ ∣ V0 × di−1 ∣ ⋅

f−1�
k=1

(tk
i−1

)2

‖Ti−1‖2
min

�
∣
V
y

Vy

∣, ∣
V
x

Vx

∣

�

∣ Vk
y,i

∣

(37)

‖�n−1
i

‖ ≤ ∣ V0 × di−1 ∣ ⋅

f−1�
k=1

(tk
i−1

)2

‖Ti−1‖2
min

�
∣
V
y

Vy

∣, ∣
V
x

Vx

∣

�

∣ Vk
x,i

∣

min(
dx,0

dy,0
,
Vx,0

Vy,0

) ≤ Vk
x,i

Vk
y,i

≤ max(
dx,0

dy,0
,
Vx,0

Vy,0

) and ∣
Vm
x,i

Vm
y,i

Vn
y,i

Vn
x,i

∣≤∣ dx,0

dy,0

Vy,0

Vx,0

∣ 

is true ∀0 < n,m ≤ f  . Combining the latter with 
� =∣ max(

dx,0

dy,0

Vy,0

Vx,0

,
dy,0

dx,0

Vx,0

Vy,0

) ∣ , then 𝜇 >∣
Vm
x,i

Vm
y,i

Vn
y,i

Vn
x,i

∣ is true. Thus, 

inserting 𝜇 >∣
Ve
x,i

Ve
y,i

Vs
y,i

Vs
x,i

∣ and Vk
i−1

× di−1 = Vk
0
× di−1 in Eq.(29) 

results in the following upper bound:

Consider the second tern in Eq.(38) and use 𝜇 >∣
Ve
x,i

Ve
y,i

Vk
y,i

Vk
x,i

∣ , an 

upper bound for Eq.(38) follows:

Applying � =
1

�n
min(∣

V
y

Vy

∣, ∣
V
x

Vx

∣) , �0
x,i

= 0 and j = n − 1 

results in the following bounds:

Using �n−1
y,i

= 0 results in the inequality (36). Since 
� = max(∣

dx,0

dy,0

Vy,0

Vx,0

∣, ∣
dy,0

dx,0

Vx,0

Vy,0

∣) , the same reasoning results in 

the following upper bound for

	�  ◻

Further, an analytic expression for yf
i
 is computed using 

�n−1
x,i

 in the following Lemma.

Lemma 7  Suppose that Assumption 2 is true, Gi = Gi−1 and 
y
f−1

i
= y

f−1

i−1
 , then
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∣ �
j
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∣ ≤ Ve
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∣

+ �
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0
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∣
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∣

+ �
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0
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∣
.
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∣ +��
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∣
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�
∣
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∣

�
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∣
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(40)y
f

i
= y

f

i−1
+

⎛⎜⎜⎝
�

(t
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)2
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V
f
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⎞⎟⎟⎠
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Pro o f   L e t  �i = t
f

i
V
f

y,i
 ,  t h e n  y

f−1

i
= y

f−1

i−1
 i m p l i e s 

y
f

i
= y

f

i−1
+ �i − �i−1 and we compute �i as a function of �i−1 

and �n−1
x,i

.
Let L1 be the line that joins rf

i
 and r̃f  , M = L1 ∩ [r

f−1

i
r
f−1

i−1
] 

and rf
i
r
f−1

i
M the triangle with the angles � , � and � respec-

tively, Fig 12. We define with � the angle between L1 and 
[r

f−1

i
r
f−1

i−1
] , then �i = sin(�)‖rf

i
M‖ . Applying � = 180 − � and 

the sinus Law in triangle rf
i
r
f−1

i
M results in:

Since rf
i
− r

f−1

i
= �i and M, r

f

i
∈ L1 , then tan(�) =

dy

dx
 and 

tan(�) =
V
f

y,i

V
f

x,i

 hold. Apply �i = sin(�)‖rf
i
M‖ results in:

where ‖rf−1
i

M‖ = �n−1
x,i

+ ‖rf−1
i−1

M‖ . Consider ‖rf−1
i−1

M‖ and 
applying Eq. (41) and (42) for triangle rf

i−1
r
f−1

i−1
M results in 

�i−1:

Combining (42) and (43) results in:

Inserting Vi × di−1 = Vi−1 × di−1 simplifies �i:

(41)

‖rfiM‖ =
sin(�)

sin(�)
‖rf−1

i
M‖ =

sin(�)

sin(� − �)
‖rf−1

i
M‖

=
1

cos(�) − sin(�)
cos(�)

sin(�)

‖rf−1
i

M‖

(42)
�i =

1

cos(�)

sin(�)
−

cos(�)

sin(�)

‖rf−1
i

M‖ =
1

dx,i−1

dy,i−1
−

V
f

x,i

V
f

y,i

‖rf−1
i

M‖,

(43)
�i−1 =

1

dx,i−1

dy,i−1
−

V
f

x,i−1

V
f

y,i−1

‖rf−1
i−1

M‖

�i =
1

dx,i−1

dy,i−1
−

V
f

x,i−1

V
f

y,i−1

�n−1
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+

dx,i−1

dy,i−1
−

V
f

x,i−1

V
f

y,i−1

dx,i−1

dy,i−1
−

V
f

x,i

V
f

y,i

�i−1

Recall yf
i
= y

f

i−1
+ �i − �i−1 , then yf

i
 is reduced to:

	�  ◻

Theorem  4  Suppose Assumption 2 and 1 are true. Let 
� = max

(
∣
dx,0

dy,0

Vy,0

Vx,0

∣, ∣
dy,0

dx,0

Vx,0

Vy,0

∣
)
 and � =

1

�n
min(∣

V
y

Vy

∣, ∣
V
x

Vx

∣) , 

then the MT error di converges to 0, as i → ∞.

Proof  The proof consists of two parts. Given that dj = �jd0 
for all j ≤ i according to Lemma 4, we use the induction 
method to show that �i ≥ 0 in part 1 of the proof. Then we 
show ‖di‖ is monotonically decreasing and accordingly 
‖di‖ ⟶ 0 when i → ∞ in part 2.

As the following analysis holds for ∀i ≥ 0.
 Part 1: In order to show that �i ≥ 0 , we suppose w.l.o.g 

that dy,0 ≠ 0 and we consider ∣ ŷf
i
− y

f

i−1
∣ , where r̂f

i
 is the 

AUV position when Gi−1 ≠ Gi and rf
i
 when Gi−1 = Gi . Since 

r
f

i
 , rf

i−1
 and r̂f

i
 are aligned, then r̂f

i
− r

f

i−1
=

‖r̂f
i
−r

f

i−1
‖

‖rf
i
−r

f

i−1
‖ (r

f

i
− r

f

i−1
) 

is true and Eq.(34) implies that ‖r̂
f

i
−r

f

i−1
‖

‖rf
i
−r

f

i−1
‖ ≤ 1 . Hence, 

∣ ŷ
f

i
− y

f

i−1
∣≤∣ yf

i
− y

f

i−1
∣ holds. Apply dy,i = ỹf − ŷ

f

i
 , then an 

upper bound for ∣ ŷf
i
− y

f

i−1
∣ follows:

Substitute ∣ yf
i
− y

f

i−1
∣ using Eq.(40) which holds when 

Gi = Gi−1 results in the following upper bound:

�i = �i−1 −
�n−1
x,i

V
f

y,i

V0 × di−1
+ �

(t
f

i−1
)2

‖Ti−1‖2
dy,i−1

y
f

i
= y

f

i−1
+ (�

(t
f

i−1
)2

‖Ti−1‖2
−

�n−1
x,i

V
f

y,i

V0 × di−1
)dy,i−1

∣ ŷ
f

i
− y

f

i−1
∣ =∣ dy,i−1 − dy,i ∣

=∣ 𝜅i−1 − 𝜅i ∣∣ dy,0 ∣

≤∣ yf
i
− y

f

i−1
∣

Fig. 12   Illustration of the traced 
trajectories �i (purple line), �i−1 
(blue line) and the change of 
r
f

i
 as a function of rf

i−1
 and �n−1

x,i
 

(color figure online)
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Insert ∣ dy,i−1 ∣= �i−1 ∣ dy,0 ∣ in (44) and divide with �i−1:

Now substitute �n−1
x,i

 with Eq.(36) leads to:

Since � = max

(
∣
dx,0

dy,0

Vy,0

Vx,0

∣, ∣
dy,0

dx,0

Vx,0

Vy,0

∣
) ≥ 1

a n d  min(∣
V
y

Vy

∣, ∣
V
x

Vx

∣) < 1   ,  t h e n 

𝜔 =
1

𝜇n
min(∣

V
y

Vy

∣, ∣
V
x

Vx

∣) < 1.

Further 
∑f

k=1
(tk
i−1

)2 = ‖Ti−1‖2 and 
V
f

y,i

Vk
y,i

min(
V
y

Vy

,
V
x

Vx

) ≤ 1 

leads to � (t
f

i−1
)2

‖Ti−1‖2 +
∑f−1

k=1

(tk
i−1

)2

‖Ti−1‖2 ≤ 1.
Hence, 1 − �i

�i−1
≤ 1 and �i−1 ≥ 0 implies �i ≥ 0 . We show 

in the second part that dy,i is monotonically decreasing and 
accordingly dy,i ⟶ 0 as i ⟶ ∞.

 Part 2: We show first that rf
i
∈ [r

f

i−1
, r̃f ] . As Lemma 4 

implies that di = �id0,∀i then Vk
i
= V0 + (�

∑i−1

j=0

tk
j

‖Tj‖2 �j)d0 
a n d  t h e r e  ex i s t s  � ∶ [0, ttot] → R  s u ch  t h a t 
ri(t) − ri−1(t) = �(t)d0 . We show in the following that 
𝜈(t) > 0.

Let t1
i
 and t1

i−1
 be the travel time in cell C1 at iteration i and 

i − 1 a n d  w e  d e f i n e  tm = min(t1
i
, t1
i−1

)  ,  t h e n 
∫ t

0

�
Vi − Vi−1

�
(s)ds =

tt1
i−1

‖Ti−1‖2 �i−1d0 = �(t)d0 with
𝜈(t) > 0 for 0 < t ≤ tm . Suppose there exists tm < 𝜏 ≤ ttot 

such that �(�) = 0 and 𝜈(t) > 0 for 0 < t < 𝜏  . Hence, 
ri(�) − ri−1(�) = 0 and �i and �i−1 intersect in the same cell.

Let Cr = Gi−1 ∩ Gi and 𝜀 > 0 such that ri(�) ∈ Cr and 
ri(� − �) ∈ Cr . As Cr ∈ Gi−1 , then

Vr
i
= Vr

i−1
+

tr
i−1

‖Ti−1‖2 �i−1d0 and accordingly
∫ 𝜏

𝜏−𝜀

tr
i−1

‖Ti−1‖2 dt = 𝜀
tr
i−1

‖Ti−1‖2 > 0 . Given 𝜈(t) > 0 for 0 < t < 𝜏 , 
then 𝜈(𝜏 − 𝜀) > 0 and 𝜈(𝜏) > 𝜈(𝜏 − 𝜀) , Thus, 𝜈(𝜏) > 0 which 
contradicts �(�) = 0 . Hence, 𝜈(t) > 0 for 0 < t ≤ ttot.

Let �1 = �(ttot) such that rf
i
− r

f

i−1
= �1d0 , then applying 

di−1 = �i−1d0  a n d  r̃f − r
f

i
= di = 𝜅id0  l e a d s  t o 

di = (1 −
�1

�i−1
)di−1 .  Reca l l  tha t  di =

�i

�i−1
di−1 ,  t hen 

(44)∣ �i−1 − �i ∣∣ dy,0 ∣≤∣ � (t
f

i−1
)2

‖Ti−1‖2
−

�n−1
x,i

V
f

y,i
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∣ 1 −
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f
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x,i

∣ V
f
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∣ V0 × di−1 ∣
∣

(45)
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∣ V
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V
y

Vy

,
V
x

Vx

)
V
f

y,i

Vk
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∣

+ �
(t
f

i−1
)2

‖Ti−1‖2

(1 −
�1

�i−1
) =

�i

�i−1
 . Hence, �i−1 ≥ 0 and �i ≥ 0 implies that 

(1 −
𝛼1

𝜅i−1
) > 0.

Finally, 𝛼1 = 𝜈(ttot) > 0 implies (1 − 𝛼1

𝜅i−1
) < 1 . Therefore, 

di = (1 −
�1

�i−1
)di−1 w i t h  0 < (1 −

𝛼1

𝜅i−1
) < 1 i m p l i e s 

r
f

i
∈ [r

f

i−1
, r̃f ] . However, we still can not draw the conclusion 

that limi→∞ di = 0 because it is still possible that 
limi→∞(1 −

�1

�i−1
) = 1.

The following arguments will show that ‖di‖ < ‖di−1‖ 
holds for all i, i → ∞.

Given the AUV trajectory �i evolves monotonically and 
the number of cells is bounded, then there exists p such that 
Gi = Gi+1,∀i ≥ p and yf−1

i
= y

f−1

i+1
 or xf−1

i
= x

f−1

i+1
.

S u p p o s e  y
f−1

i+1
= y

f−1
p = yf−1  a n d 

𝛿 = min(∣ y
f
p − yf−1 ∣, ∣ ỹf − yf−1 ∣) . As yf

i
∈ [y

f

i−1
, ỹf ] , then 

� ≤∣ yf
i
− yf−1 ∣ is constant ∀i ≥ p.

Let  𝜏 =
𝛿

Vy

< t
f

i
, t

f

i+1
 and  reca l l  𝜈(t) > 0  ,  t hen 

ri(t
tot − �) − ri−1(t

tot − �) =
�(ttot−�)

�i
di , with 𝜈(t

tot−𝜏)

𝜅i
> 0 and a 

bound on ∣ dy,i+1 ∣ follows:

G i ve n  ‖Ti‖2 = ∑f

k=1
(tk
i
)2 ≤ (

∑f

k=1
tk
i
)2 = (ttot)2  ,  t h e n 

(
�

Vy
)2

(ttot)2
≤ �2

‖Ti‖2 and ∣ dy,i+1 ∣ is bounded as follows:

Since 0 < 1 − 𝜔
(

𝛿

Vy
)2

(ttot)2
< 1 , which does not depend on i, we 

c o n c l u d e  t h a t  limi⟶∞(1 − �
(
y1−y0

Vy
)2

(ttot)2
)i = 0  a n d 

limi⟶∞ dy,i = 0 . Recall that di = �id0 and dy,0 ≠ 0 then 
limi⟶∞ �i = 0 and di ⟶ 0 when i ⟶ ∞ . 	� ◻
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∣ dy,i+1 ∣ =∣ dy,i − �
ttot

0

�
Vk
y,i+1

− Vk
y,i

�
(t)dt ∣

≤∣ 1 − �(ttot − �)

�i
− �

ttot

ttot−�

t
f

i

‖Ti‖2
dt ∣∣ dy,i ∣

≤ (1 −
�2

‖Ti‖2
) ∣ dy,i ∣

0 ≤∣ dy,i+1 ∣≤ (1 − �

(
�

Vy

)2

(ttot)2
) ∣ dy,i ∣ .
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