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ABSTRACT
In this paper, we present a Long Short-Term Memory (LSTM)-based
Kalman Filter for data assimilation of a 2D spatio-temporally vary-
ing depth-averaged ocean flow field for underwater glider path
planning. The data source to the filter combines both the Euler-
ian flow map with the Lagrangian mobile sensor data stream. The
depth-averaged flow is modeled as two components, the tidal and
the non-tidal flow component. The tidal flow is modeled with AD-
CIRC (Advanced Three-Dimensional Circulation Model), while the
non-tidal flow field is modeled by a set of spatial basis functions
and their time series coefficients. The spatial basis functions are the
principal modes derived by performing EOF (Empirical Orthogonal
Functions) analysis on the historical surface flow field measured by
high frequency radar (HFR), and the temporal coefficients of the
spatial basis function are modeled by an LSTM neural network. The
Kalman Filter is performed to combine the dynamics derived from
the LSTM network, and the observations from the glider flow esti-
mation data. Simulation results demonstrate that the proposed data
assimilation method can give flow field prediction of reasonable
accuracy.
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1 INTRODUCTION
Underwater gliders are moving robotic sensing platforms [15] that
are able to perform persistent surveying missions in the ocean for
data collection [11, 20, 28]. They take advantage of buoyancy and
attitude to move through the water column [6, 23, 25, 27], surfacing
at defined intervals to communicate with the onshore dockserver
to receive updated mission commands and waypoint lists. Since
the forward speed of underwater gliders is relatively low compared
to flow speed, ocean flow could have critical influence on glider’s
motion. Therefore, flow field prediction with satisfactory accuracy
and resolution is a fundamental requirement for underwater glider
path planning.

In general, there are two kinds of data sources from which flow
field information can be obtained: through direct measurement,
and from ocean circulation models. Depending on the area of inter-
est, direct measurements of flow can be made in real or near-real
time from cabled acoustic doppler current profilers (ADCPs) or
at the surface from high frequency radar (HFR). ADCPs are typ-
ically moored or installed onto buoys or ships to measure ocean
current as a function of depth, but cannot provide spatial variability
of the field over long time series. HFR systems provide estimates
of surface flow data over large areas in coastal regions that can
be covered by long- or short-range radar, but glider navigation
requires accurate estimates of depth-averaged flow, which is not
necessarily represented by surface measurements. Gliders navigate
by dead-reckoning, based on the depth-averaged estimate of flow
over its three-dimensional path, but these estimates of velocity are
phase-lagged with respect to the surfacing interval, and cannot
account for the spatial and temporal variation of the flow field.
Ocean circulation models (e.g., the Regional Ocean Modeling Sys-
tem (ROMS) [22], the Terrain-following Ocean Modeling System
(TOMS) [8], and the Hybrid Coordinate Ocean Model (HYCOM)
[3]) can provide flow information over a large spatial domain, and
forecast over several days, and have been applied extensively to
navigation tasks of underwater gliders [24, 26]. However, models
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are limited by their spatial and temporal resolution, and may con-
tain uncertainty and error due to incomplete physics or boundary
conditions, particularly in areas of large gradients [7, 9].

Data assimilation can be defined as the incorporation of obser-
vations into a dynamical model to improve forecasts. Observations
of the system can be either Lagrangian data stream collected by a
moving vehicle along its trajectory, or Eulerian map collected by
static sensor networks. The model can be described by a set of differ-
ential equations derived either from geophysical models or through
data-driven methods. Data assimilation methods can be divided
into two classes, variational and sequential methods [1]. Variational
methods compute the unknown parameters of the system by min-
imizing a cost function describing the misfit between the model
and observation [5, 12]. Sequential methods takes a probabilistic
framework, and propagate the system states estimation at each
time step, given the dynamical system model and the observation
information [1, 17].

In this work, we will adopt the sequential data assimilation
method to provide short term predictions for glider navigation, de-
composing and parameterizing spatial and temporal variability sep-
arately to save computation cost [2]. Empirical orthogonal function
(EOF) analysis [14] is a well known method for data compression in
two or more dimensions. With EOF analysis, the spatio-temporally
varying flow field can be decomposed into a set of spatial basis
functions that vary only in space, and a set of temporal coefficients
that vary in time. The combination of spatial basis function and
temporal coefficients can fully represent the spatial and temporal
variability of the field. In this case, the temporal variation of the
system can be described by the variation of the set of temporal coef-
ficients, which can be modeled by the time-series analysis modeling
techniques.

Obtaining correct transition and measurement models is crucial
to achieve improved filtering accuracy. Various methods have been
applied to model the transition and measurement model, and also
to estimate the unknown state and measurement noise covariance.
To obtain the transition and observation model, Neural Network
based approaches have emerged in constructing temporal filters for
dynamical systems. [4] presents a Long Short-TermMemory (LSTM)
-based Kalman Filter method to model the human motion. [18]
introduces a Neural Network-based Ensemble Kalman Filter method
to interpolate sea surface temperature field. Noise covariance has
been estimated making the assumption that the noise covariance
is time-invariant, and applying Maximum Likelihood Estimation,
Covariance-Matching Techniques, and other algorithms [16]. Other
methods allow the noise covariance matrix to be time-varying
[13, 21], and dynamically weights and predicts the evolution of
states based on the transition model and the measurements.

In this work, we propose to develop a data assimilation method
utilizing LSTM-based Kalman Filter that provides prediction of the
depth-averaged ocean currents in a domain, combining the Eulerian
flow map with the Lagrangian data stream. The depth-averaged
flow is modeled as two components, the tidal and the non-tidal flow
component. The tidal flow is modeled with ADCIRC (Advanced
Three-dimensional Circulation Model) [19], while the non-tidal
flow field is modeled by a set of spatial basis functions and their
time series coefficients. The spatial basis functions are the principal
modes derived by performing EOF analysis on the historical HFR

flow field, and the temporal coefficients of the spatial basis function
are modeled by LSTM network. We verify the proposed data assim-
ilation method by comparing the simulated flow with HFR system
measurements and observed flow during a glider deployment.

2 PROBLEM FORMULATION
In this section, we will first present the formulation of the problem,
and then briefly describe the EOF analysis and the structure of
LSTM network.

Consider a space-time flow field. Noisy observations of this flow
field are taken at each time step in some time interval T . We denote
the set of observations at time step t as yt ∈ Rn . We assume that
the physical process of this field can be described by the evolution
of some unknown hidden states x ∈ Rm ,

yt = H(xt ) + ηt , (1)

whereH : Rm → Rn describes the relationship between the hidden
states and the observations. ηt ∈ Rn represents an independently
and identically distributed Gaussian noise.

The dynamics of the hidden states is usually described by a set
of differential equations

xt = f(xt−1) + nt , (2)

where f : Rm → Rm denotes the dynamical model governing the
evolution of the hidden states.nt ∈ Rm represents an independently
and identically distributed Gaussian noise.

The goal of this paper is to combine the Eulerian flow observation
with the Lagrangian flow observation, in order to obtain a less noisy
reconstructed flow field. From the probabilistic point of view, this
problem can be formulated as a Bayesian filtering problem. Under
certain assumptions, the Bayesian filtering problem can be solved
by the famous Kalman Filter.

2.1 EOF Analysis
The objective of EOF analysis is to determine a set of complete and
orthogonal functions that can characterize the spatial structures of
a domain, and also the corresponding temporal variability of the
spatial structures.

Denote a discrete space-time flow field as Z . The value of the
field at time step t ∈ T and grid point s ∈ S is noted as the t th

row and sth column element of matrix Z , noted by Z (t , s). The
covariance matrix C of Z is given by

C =
(Z − 1z̄)T (Z − 1z̄)

n − 1
, (3)

where z̄ is a row vector representing the time-averaged flow speed
at each grid point in the domain S, z̄(s) denotes the time-averaged
flow speed at the sth grid point. 1 represents a column vector
containing all one elements. EOF aims to find the linear combination
of grid points that explains the maximum variance. The kth EOF
mode, denoted as vk , is the eigenvector corresponding to the kth
largest eigenvalue of the covariance matrix. The time coefficient
corresponding to the kth EOF mode, denoted as βk is

βk (t) =
S∑
s=1

(Z (t , s) − z̄(s))vk (s). (4)



Figure 1: Structure of the LSTM block

The spatial and temporal varying flow field can be decomposed into
the time-averaged field z̄(s), and the EOF modes vk (s) multiplied
with time coefficients βk (t), Z (t , s) =

∑K
k=1 βk (t)vk (s) + z̄(s). To

make it more convenient to represent the flow field, we reshape
Z (t , s) into a 3D matrix ξ (t , r), where r is a 2D column vector rep-
resenting the x , y position of a grid cell in the domain S. In this
work, we use ξ to denote the flow velocity of each grid cell of the
domain in either N/S or E/W direction. Similarly, each of the EOF
modes, vk (s) is reshaped into a 2D matrix ϕk (r), and the averaged
field, z̄(s) will be reshaped into a 2D matrix ξ̄ (r). Then, the flow
field can be represented as

ξ (t , r) =
K∑
k=1

βk (t)ϕk (r) + ξ̄ (r). (5)

2.2 LSTM
The long short-term memory (LSTM) [10] method is a variant of a
recurrent neural network, and is designed to address the problem
of vanishing and exploding gradients faced by recurrent neural
networks. By applying LSTM, we are able to build not only the short
term relationship, but also long term dependencies in sequential
data.

The equations for a general LSTM block are as follows,

ft = σ (Wxf xt +Whf ht−1 + bf )

it = σ (Wxixt +Whiht−1 + bi )

ot = σ (Wxoxk +Whoht−1 + bo )

C̃t = tanh(WxC̃xt +WhC̃ht−1 + bC̃ )

Ct = ft ◦Ct−1 + it ◦ C̃t−1

ht = ot ◦ tanh(Ct ),

(6)

where σ (·) denotes the sigmoid function and ◦ denotes element-
wise multiplication. As shown in Figure 1, xt is the input for the
current LSTM block at time t , ht−1 and ht are hidden states at time
t − 1 and t respectively, and Ct−1 and Ct are cell states. ft , it and
ot are outputs of forget gate layer, input gate layer and output gate
layer respectively.

The forget gate decides how much information from previous
steps should be kept. The input gate decides how much input in-
formation will be used in the cell state. After running the first two
gates, the cell state is also updated. The output gate decides how
much information from the cell state will go to the hidden state.
The input gate helps connect current input with the cell state which
builds the short-term dependency. The forget gate relates hidden
state from previous step to the current cell state and the output
gate relates hidden state with cell state, which builds the long-
term dependency. The weight matrices in Eq. (6) can be learned by
LSTM networks through the training process given inputs and cor-
responding outputs. Then the LSTM networks with learned weight
matrices are capable to model the dynamics between the input and
the output in the sense of long and short term dependencies.

Using LSTM network does not require prior knowledge on the
structure of the system. During the training process, we only need
input data and the corresponding output data to train the network.
After the network is trained, input data are required to run the
LSTM network.

3 DATA ASSIMILATION USING LSTM BASED
KALMAN FILTER

In this section, the proposed data assimilation method using LSTM
based Kalman Filter is introduced. We will first introduce deriving
the state transition model using the LSTM network. Then the data
assimilation technique using LSTM based Kalman Filter will be
introduced.

3.1 State dynamics
We assume that the dynamics model for the temporal coefficients
can be written as follows

B(t) = f (B(t − 1), . . . ,B(t − p), t), (7)

where B(t) =
[
β1(t), . . . , βK (t)

]T , f (·) is an unknown time-varying
function and p is the length of time window that describes its time
dependency.

Since there is no deterministic model for the dynamics of tempo-
ral coefficients of the EOF modes, we consider applying LSTM to
model the temporal variation of the flow field. Specifically, an LSTM
network is used to model the dynamics of the temporal coefficients
of the EOF modes,

B(t) = дLSTM (B(t − 1), . . . ,B(t − p)), (8)

where дLSTM (·) represents the trained LSTM-based Neural Net-
work model of the temporal coefficients. By applying LSTM to
model the dynamics of temporal coefficients, we are able to build
the long short-term relationship between current coefficients and
those from previous time steps.

The training process of the LSTM network is shown in Figure 2.
First the EOF analysis is performed to derive the temporal coeffi-
cients of the historical ocean surface flow data. Then a time delay
function is employed to generate the N steps time-delayed vector
B(t −1) = [B(t −1)T , . . . ,B(t −N )T ]T . B(t −1) is the training input
data of the LSTM network, and the corresponding output data of
the LSTM network is B(t).



Figure 2: LSTM training for state equation

The Jacobian matrix of the state equation is needed to propagate
the covariance matrix of the Kalman Filter at each iteration. We
calculate the Jacobian matrix by linearizing дLSTM over a certain
time window TL . The following optimization problem is solved
in each time window TL for a linearized model of the temporal
coefficients,

min
Fk ,ck

∑
τ ∈[t−TL,t ]

∥βk (τ ) − Fk (τ − 1)βk (τ − 1) − ck ∥. (9)

The process update equations of the Kalman Filter can then be
written as

B(−)(t) = дLSTM (B(t − 1))

P (−)(t) = F (t − 1)P(t − 1)F (t − 1)T +W (t − 1),
(10)

where F (t − 1) is a diagonal matrix whose 1st , . . . ,Kth diagonal
elements are F1(t − 1), . . . , FK (t − 1),W (t − 1) is the variance of the
process noise.

3.2 Flow observation
In this work, ocean currents are modeled as two components, the
tidal component and the non-tidal component. We employ the
predictive ocean model ADCIRC for modeling depth-averaged tidal
currents. The non-tidal component is modeled by a set of spatial
basis function and a set of time series coefficients correspondingly.
Then according to Eq. (5), the surface flow at grid point r and time
t can be denoted as

ξ sur f (t , r) =
K∑
k=1

βk (t)ϕk (r) + ξ̄non−t idal (r) + ξt idal (t , r) + n
sur f ,

(11)
where the EOF modes ϕk (r), and the weights of the EOF modes,
βk (t) are defined in Eq. (5).

Since the depth-averaged flow that glider experiences over each
subsurface interval might be different from the surface flow that
HFR measured, we assume the depth-averaged non-tidal flow can
be approximated by the surface non-tidal flow multiplied with an
unknown parameter G ∈ R. Then the depth-averaged flow at grid
point r and time t can be modeled as

ξdepth (t , r) = G
( K∑
k=1

βk (t)ϕk (r)+ξ̄non−t idal (r)
)
+ξt idal (t , r)+n

depth .

(12)

We combine the surface flow and the depth-averaged flow into
a column vector and rewrite Eq. (11) (12) as follows,

z(t , r) =
[
ξ sur f

ξdepth

]
(t , r) =

[
1
G

] ( K∑
k=1

βk (t)ϕk (r) + ξ̄non−t idal (r)
)

+

[
ξt idal
ξt idal

]
(t , r) +

[
nsur f

ndepth

]
=H (t , r)B(t) +M(t , r) +

[
n
sur f
p

n
depth
p

]
,

(13)

where H (t , r) =
[
1
G

]
[ϕ1(r), ...,ϕK (r)],

andM(t , r) =
[
1
G

]
ξ̄non−t idal (r) +

[
1
1

]
ξt idal (t , r).

3.3 Data Assimilation
The parameterG in Eq. (13) is unknown. Thus, we have a nonlinear
observation equation, leading to a nonlinear filtering problem. To
solve this nonlinear filtering problem, we decouple the state esti-
mation and parameter estimation, and decompose a nonlinear filter
into two sub-filters. Upon each surfacing event, the first sub-filter
will derive state estimation with prior estimated G. Then given
the updated state estimation, the second sub-filter will update es-
timation of the unknown parameter G from glider derived flow
estimate.

For the first sub-filter for state estimation, the filtering equations
are given by

B(−)(t) = дLSTM (B(t − 1))

P (−)(t) = F (t − 1)P(t − 1)F (t − 1)T +W (t − 1)

K(t) = P (−)(t)H (t , r)T (H (t , r)P (−)(t)H (t , r)T + R(t))−1

B(t) = B(−)(t) + K(t)(z(t , r) − H (t , r)B(−)(t) −M(t , r))

P(t) = P (−)(t) − K(t)H (t , r)P (−)(t).

(14)

For the sub-filter of parameter estimation, we fix the states and
estimate the parameter G. At each surfacing event, the state and
observation equation are given by

G(t) = G(t − 1) +wG (t − 1), (15)

zdepth (t , r) = HG (t , r)G(t) +MG (t , r) + ndepth , (16)
wherewG is the Gaussian distributed process noise with mean zero
and varianceWG , ndepth is the Gaussian distributed measurement
noise with mean zero and variance RG ,MG (t , r) = ξt idal (t , r),

HG (t , r) =
[
ϕ1(r) . . . ϕK (r)

]
B(t) + ξ̄non−t idal (r).

The filtering equations for parameter estimation are given by

G(−)(t) = G(t − 1)

PG(−)(t) = PG (t − 1) +WG (t − 1)

KG = PG(−)(t)(HG )T
(
HGPG(−)(t)(HG )T + Rdepth

)−1

G(t) = G(−)(t) + KG (zdepth (t , r) −MG − HGG(−)(t))

PG (t) = (I − KGHG )PG(−)(t)(I − KGHG )T + KGRdepth (KG )T .

(17)



Figure 3: Comparison between ground truth temporal coef-
ficients used for training the network, and the LSTM pre-
dicted temporal coefficients for theW-E direction flow field.

4 SIMULATION RESULTS
In this section, the simulation results of using LSTM data assimila-
tion methods are presented. First, we will show the results of using
LSTM to predict temporal coefficients. Then we will present the
results of using LSTM based Kalman Filter for data assimilation of
the ocean flow field.

The HFR data input is given by an HFR product made available
by Dana Savidge (Skidaway Institute of Oceanography, University
of Georgia) and Sara Haines (University of North Carolina at Chapel
Hill) that combines radials from two different HFR systems installed
near Cape Hatteras, NC. The 2-D surface flow field is a least squares
fit to a combination of radial velocities from a long range Coastal
Ocean Dynamics Applications Radar (CODAR) and a nested high
resolution Wellen Radar (WERA), with an approximate 5 - 6 km
horizontal resolution.

In this simulation experiment, we train the LSTM with 1657
historical data points, and then test its performance with another
199 data points. A single hidden layer LSTM network with 100
hidden units is used for state prediction. We use the ground truth
coefficients time-delayed vector as input for the LSTM. The choice
of time-delayed parameter N , which is 3 in this simulation, is based
on the time window TL of Jacobian matrix.

Through the EOF analysis, the spatial and temporal varying flow
field can be decomposed into the time-averaged field, and the six
EOF modes multiplied with their corresponding time coefficients.
As shown in Figure 3 and Figure 4, compared with the ground truth
of the temporal coefficients, the LSTM network is able to generate
accurate predictions for the training dataset of temporal coefficients
of EOF modes. The LSTM predictions reveal the same trend as the
ground truth and have root mean square errors less than 0.005
which shows that the predicted temporal coefficients have little
difference from the ground truth. After the LSTMnetwork is trained,
we can test the network using testing dataset. As shown in Figure 5
and Figure 6, the trained LSTM is also capable of making accurate
prediction for the testing dataset compared with the ground truth.
The temporal evolution of the flow field is well captured by the
trained LSTM network, both in short term and in relatively long
term. Table 1 demonstrates LSTM’s capability of making satisfying
prediction with low root mean square error.

Figure 4: Comparison between ground truth temporal coef-
ficients used for training the network, and the LSTM pre-
dicted temporal coefficients for the N-S direction flow field.

Table 1: RMSE between ground truth temporal coefficients
used for testing the network, and the LSTM predicted tem-
poral coefficients for W-E and N-S direction flow field.

W-E direction N-S direction

1st mode 0.0205 0.0110

2nd mode 0.0112 0.0244

3rd mode 0.0298 0.0342

4th mode 0.0187 0.0207

5th mode 0.0078 0.0079

6th mode 0.0061 0.0063

Figure 5: Comparison between ground truth temporal coeffi-
cients used for testing the network, and the LSTM predicted
temporal coefficients for the W-E direction flow field.

Given the set of temporal coefficient predicted by the LSTM, the
flow speed prediction from the Kalman Filter can be computed. As
shown in Figure 7, we compare the one time step ahead flow predic-
tion from the LSTM based Kalman Filter with the glider derived flow
estimation and HF Radar reported surface flow measurement along
glider trajectory. From the plot, it is shown that the LSTM-Kalman



Figure 6: Comparison between ground truth temporal coeffi-
cients used for testing the network, and the LSTM predicted
temporal coefficients for the N-S direction flow field.

Figure 7: Comparison between glider derived flow estima-
tion, HF Radar reported surface flow measurement, and
the flow estimation from LSTM based Kalman Filter along
glider trajectory in 20 consecutive diving-surfacing events.

Filter prediction reports a similar trend as the glider-estimated flow
and the HFR measurement.

We also estimate surface to depth-averaged flow conversion rate.
As shown in Figure 8, value of the G function fluctuates over time.
The G function of W-E direction flow has significant deviation
from 1 at the 15th surfacing, indicating that the estimated depth
averaged flow has significant difference from the surface flow. As
shown in Figure 7, at the 15th surfacing, the HFR surface flow
measurement has significant difference from the depth-averaged
glider derived flow estimation, which results in the fluctuation of the
G function in W-E direction at the 15th surfacing event. Similarly,
for the G parameter in N-S direction, it shows large variation at

Figure 8: Estimated surface to depth averaged flow conver-
sion rate in 20 diving-surfacing events.

the 17th surfacing, which is approximately the time when there
is large difference between the glider estimated flow and the HFR
measurement, as shown in Figure 7.

5 CONCLUSIONS
In this paper, we present an LSTM-based Kalman Filter for data
assimilation of a spatio-temporally varying depth-averaged ocean
flow field for underwater glider path planning. The Kalman Filter
is performed to combine the dynamics derived from the LSTM
network, and the observations from the glider flow estimation data.
Simulation results demonstrate that the proposed data assimilation
method can give flow field prediction of accuracy.
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