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Abstract— We propose a memory-constrained partition-
based method to extract symbolic representations of the belief
state and its dynamics in order to solve planning problems in
a partially observable Markov decision process (POMDP). Our
K-means partitioning strategy uses a fixed number of symbols
to represent the partitions of the belief space and ensures
the parameterization of the belief dynamics does not grow
exponentially as the system dimension increases. By casting our
problem as a partitioning of the POMDP, we can then solve
planning problems using traditional symbolic planning solvers
(such as HTN or A* solvers). Our work is motivated by an
autonomous underwater vehicle navigation problem where the
vehicle is affected by uncertain flow conditions and receives
severely limited position observations. Simulation experiments
are provided to validate the performance of the proposed
algorithms.

I. INTRODUCTION

For continous partially observable Markov decision pro-
cesses (POMDPs), the introduction of a belief state, a
continuous posterior distribution conditioned on historical
observations [1], allows for the transformation of a POMDP
problem to an MDP problem where each state is a possible
belief state. However, solving planning problems in MDPs
is often intractable as planning forward in time yields an
exponential growth of belief-state and action pairs (i.e., the
curse of dimensionality). Many methods in the literature
design optimal control inputs by taking the expectation of the
belief state as the true state, converting the problem into a
deterministic search. Such strategies lead to an optimal policy
for the Linear Quadratic Gaussian controller [2]. However, in
cases where the state and observation equations are nonlinear
and the cost is non-quadratic, such strategies yield sub-
optimal results.

The POMDP literature contains many methods that ap-
proximate the continuous belief state so that the search for
an optimal control strategy becomes tractable. The authors of
[3] use Gaussian distributions to approximate the belief state
and construct a deterministic approximation of the belief
state dynamics. Other methods, such as the generalized cell
mapping method proposed in [4], discretize the belief state
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into rectangular grids and represent the belief dynamics as a
Markov chain. However, such approximations may result in
MDPs that are either too large to solve computationally or
insufficiently precise.

Once an approximation of the belief state and deterministic
belief dynamics have been identified, symbolic planning
strategies can then search for an optimal sequence of control
actions while under constraints. For example, classic graph
search methods such as breadth first search, iterative deepen-
ing, and A* have all been applied to solve symbolic search
problems [5]. Compared to other continuous-state POMDP
solutions, e.g., point-based and grid-based discretization
strategies [6], [7] shows that symbolic search methods, due
to the reduced dimension of the search space, can reduce
the computation time of solving a POMDP. However, large
action spaces can still dramatically hinder plan construction
due to the large branching factor. As such, hierarchical task
network (HTN) planners use primitive action groupings to
prune the breadth of the search tree [8]. These approaches
take advantage of the hierarchical nature of tasks, and search
for plans by decomposing compound tasks until all tasks are
decomposed into primitive actions. Thus, such approaches
are well-suited to problems in which large groupings of
actions are available.

Motivated by an autonomous underwater vehicle (AUV)
navigation problem, we propose a discretization strategy of
the belief space that allocates a fixed number of partitions
according to regions where the AUV most likely visits.
Unlike other approximation strategies, we use a K-means-
based partition approach to allocate a fixed number of
partitions according to a set of Monte Carlo simulations. As
we pre-define our partition count, our approach avoids the
dimensionality problem other abstraction methods must deal
with while retaining abstraction accuracy.

AUVs have been employed for a variety of ocean sampling
and surveillance tasks [9], [10], [11], [12] and must perform
successful navigation through uncertain ocean flows while
retaining an uncertain position estimate. Operational ocean
models like the Regional Ocean Modeling System [13] and
the Hybrid Coordinate Ocean Model [14] can provide spatio-
temporal flow forecasts, but these forecasts can contain high
error and uncertainty that arise from incomplete physics or
uncertain boundary conditions [15]. In addition, underwater
localization is a difficult problem, as many conventional
terrestrial or aerial localization methods (GPS, map-based
localization) are wholly unavailable. Generally, localization
uncertainty can be reduced via acoustic beacons or periodic
surfacings. However, acoustic positioning systems can be de-
graded by sever multi-pathing effects, large Doppler spread,
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and limited bandwidth [16], and frequent surfacings lead to
a degradation of valuable underwater data collection.

Our major contributions are as follows: i) we propose a
novel discretization strategy of the belief state that allows
us to allocate a fixed number of partitions over regions
that the AUV most likely will visit, ii) we construct the
belief dynamics and deterministic predicate transition system
from the abstracted partitions in order to solve the AUV
navigation problem, and iii) we provide simulation studies
comparing our proposed method with other approximation
strategies demonstrating that the proposed algorithm achieves
significantly reduced computation times.

The organization of this paper is as follows. In Section II,
we formulate three problems necessary for solving planning
problems in infinite dimensional POMDPs. In Section III,
we discuss our solution to the first problem in which we
propose a partitioning strategy for representing an infinite
dimensional belief space with a finite number of cells. In
Section IV, we describe our approach to computing the
transition probabilities from the belief state abstraction using
Monte Carlo simulations, and in Section V, we describe
the mapping process of the partition distribution to a set
of predicate symbols that will allow us to solve planning
problems in POMDPs. Finally, in Section VI, we provide
a simulated AUV example that demonstrates the efficacy of
the proposed approach and conclude with some discussions
in Section VII.

II. PROBLEM FORMULATION

In this section, we describe a POMDP planning problem
by decomposing the problem into three subsequent problems:
i) The partitioning of the continuous belief state into a
discretized distribution with a finite number of cells, ii)
the identification of the transition probabilities between the
cells, and iii) the transformation of the cell distribution to a
symbolic representation for planning purposes.

A. Finite Partitioning of the Belief State

We introduce the full belief state of the AUV agent and
the observation model. Let xk ∈ R3 be the three-dimensional
position, yk ∈ {0, 1}N be the underwater observations from
N acoustic beacons, and uk ∈ U be the controlled heading
angle and depth change at timestep k. The vehicle’s through-
water speed is denoted as V ∈ R. A general description of the
system dynamics and the observation model can be described
by

xk+1 = f(xk, uk, ωk)

yk = h(xk, nk)
(1)

and ωk and nk are the process and observation noises. The
specific AUV obeys the dynamics

xk = F (xk, tk) +

V (cos(u1,k)−
√

2
2 |u2,k|)

V (sin(u1,k)−
√

2
2 |u2,k|)

u2,k

+ wk, (2)

where the flow field, denoted as F : R3 × R → R3 is given
by a gyre model,

F (1)(x, k) = −πA sin(πg(x(1), k)) cos(πx(2))

F (2)(x, k) = πA cos(πg(x(1), k)) sin(πx(2))
dg

dx(1)

F (3)(x, k) = 0,

(3)

where g(x1, k) = ak(x(1))2 + bkx
(1), ak = ε sinωk, bk =

1 − 2ε sin(ωk). ω ∈ R is the frequency of gyre oscillation,
and ε ∈ R determines the amplitude of the oscillation. For
observation model h, we assume beacons are detected with
a certain probability when in range of a beacon, i.e., for a
beacon j located at position rj

Pr(y
(j)
k = 1) = p1{‖xk − rj‖ ≤ Rj}

+ (1− p)1{‖xk − rj‖ > Rj},
Pr(y

(j)
k = 0) = (1− p)1{‖xk − rj‖ ≤ Rj}

+ p1{‖xk − rj‖ > Rj}.

(4)

We assume that the AUV can apply 8 different move
actions in the x-y plane and 2 actions to change between
being at the surface and being at some depth, i.e., U =
Uxy ∪ Uz where Uxy = {

[
jπ
4 0

]ᵀ}7j=0 are the planar move
actions and Uz = {

[
π
4 1

]ᵀ
,
[
π
4 −1

]ᵀ} are two depth
changing actions, the first to enable surfacing and the second
to enable diving. Notice that if any action in Uxy is taken, the
AUV will move along the planar direction with no change
in altitude while if any action in Uz is taken, then the AUV
will change depth without changing its x-y position. While
Uxy actions are useful for reaching target destinations, Uz
actions enable the glider to surface in order to re-acquire
an improved position estimate via GPS. In this work, we
additionally assume that there is no process noise on the
Uz actions and we can always surface or dive within one
timestep.

However, since we are unable to directly observe the
planar x-y components of the state xk, we instead retain
a density bk = Pr(xk|uk−1, uk−2, . . . , u1, yk, yk−1, . . . , y1).
At each timestep, bk is updated by the inputs uk−1 and noisy
observations yk. Note that in this case, bk is a recursively
updated infinite dimensional belief state leading to an in-
tractable computation of an optimal input uk.

As such, we are interested in computing an abstraction
of bk that makes computing an optimal uk tractable. In
addition, while other methods in the literature have utilized
partitioning to make computing an optimal uk feasible, such
methods are subject to scaling issues as the dimensionality of
the system increases. However, in many robotic applications,
large portions of the belief space are completely un-utilized.
Instead, we seek to find a partitioning that focuses a fixed
number of K partitions in regions of the belief space
most frequently visited in order to ensure the representation
achieves a close approximation of the belief state without
scaling as the dimensionality of the system increases. We
assume that we are provided a set of zero-input trajectories
Ψ0 = {(x̄m, ȳm, ūm = 0)}Mm=1 drawn from a distribution of
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initial states x0 and simulated forward using system (1). Note
here that the zero-input trajectories reveal information about
the system dynamics as the input to the system is additive
as shown in (1).

Problem 2.1 (Finite Partitioning): Given the dynamics
(1) and the set of trajectories Ψ, find a partitioning of the
belief state b denoted Φ = {Ri}Ki=1, where each partition
Ri is associated with a probability Θ(i) so that Θ =[
Θ(1), . . . ,Θ(K)

]ᵀ
is a distribution over the partitions Φ.

B. Identification of the Partitioned Belief Dynamics

Having found a focused partitioning Φ, we then seek to
accurately represent the transitions between the partitions Φ.
In particular, we are interested in identifying the evolution
of Θ as a sequence of discrete actions uk are selected, i.e.,

Θk+1 = T (uk)Θk. (5)

We assume that a set of trajectories Ψu = {(x̄m, ȳm, ūm =
u)}Mm=1 drawn from a distribution of initial states x0 and
simulated forward using system (1) are available where ū
for each trajectory is fixed to a specific input u ∈ Uxy
throughout.

Problem 2.2 (Finite Belief Dynamics): Given a set of tra-
jectories Ψu, estimate the transition matrix T ∈ RK×K that
describes the evolution of the partition probabilities Θ as a
function of the applied input.

C. Symbolic Predicate Transitions

The solutions of Problem 2.1 and Problem 2.2 provide us
with a decomposition of the continuous belief space into a
set of partitions Φ and an associated distribution Θ. However,
to solve planning problems in the POMDP domain, we must
construct a deterministic graph where nodes are abstracted
Θ distributions and the corresponding children nodes are the
resulting abstracted distributions from taking uk. To do so,
we must find a mapping from Θ to a new set of predicates
that discretize how strongly we believe the AUV lies within
any particular partition in Φ. In addition, we assume the AUV
may choose to periodically surface to immediately observe
its current position through a GPS measurement.

Problem 2.3 (Symbolic Predicate Transitions): Let S =
{at_surf, at_depth} ∪ {BelHi,BelMi,BelLi}Ki=1 be a set
of boolean-valued predicates where each BelHi, BelMi, and
BelLi describes the discretized certainty level associated with
partition i ∈ Φ, and at_surf, at_depth are associated with
the current depth of the AUV. Given a set of partitions Φ and
a distribution Θ over Φ, find mapping function Γ : S×Θ→
{1, 0} that maps from the distribution to the set of active
predicates.

Once Problem 2.3 is solved, we can use the mapping
Γ(Bel,Θk) to check if the predicate Bel is true at time k
as long as we retain the underlying distribution Θk at each
time-step.

III. FOCUSED FINITE PARTITIONING

In this section, we discuss our approach to solving Prob-
lem 2.1. To identify the optimal cell partition, we use a finite

number of particles to approximate the dynamics of the belief
state. Suppose {r(m)

k−1}Mm=1 are drawn i.i.d. from bk−1, and
rik|k−1 is drawn from Pr(rk|uk−1, r

(i)
k−1) for each particle.

Then bk(xk) can be approximated by the probability mass
function

b̂k(rk) =
M∑
m=1

w
(m)
k δ(rk − r(m)

k|k−1), (6)

where δ denotes the Kronecker delta function. w(m)
k is the

associated weight to each node, and weights of all nodes
sum up to one. At each timestep, the particle position is first
updated according to (2), and then the weight of each particle
is updated by the Bayes’s rule,

w
(m)
k =

p(y
(m)
k |x(m)

k|k−1, uk−1)

M∑
m=1

p(y
(m)
k |x(m)

k|k−1, uk−1)

. (7)

Since future observations is unknown. We make the fol-
lowing assumption to determinize the future observation, and
therefore determinize the future belief dynamics.

Assumption 3.1: We assume the future actual state will
obtain the most likely values, and yk = h(x̂k, nk), where
x̂ = arg max

x
bk(x).

Remark 3.1: In order to determinize the belief dynamics
to make belief space planning tractable, this is a commonly
made assumption in literature, such as in [17], [18], [19],
[20]. If less likely future observation is received during
execution, replanning scheme can be used to re-evaluate
action sequences given the updated belief state, so that the
planner remains robust to future observation uncertainty.

Consider Monte Carlo simulation datapoint before resam-
pling. Let r(m)

k ∈ R2 denote the mth particle position
at timestep k, m ∈ [1,M ], and w

(m)
k ∈ [0, 1] represent

the particle weights. Let z(m)
k = [(r

(m)
k )ᵀ, w

(m)
k ]ᵀ denote

the augmented particle data point. The simplified belief
representation should well approximate the actual belief bk.
Hence we formulate the following constrained optimization
problem to learn the optimal partition structure from the
simulated particle trajectories. µ(i) denotes the centroid of
cell i, µ(i) = [(x̄(i))ᵀ,Θ(i)]ᵀ, where x̄(i) is the centroid
position of cell i, and Θ(i) denotes the belief in cell i.

min
R

J =
∑

k∈[1,n]

∑
i∈[1,K]

∑
rmk ∈Ri

dist2(z
(m)
k , µ(i))

s.t.
∑

i∈[1,K]

Iµ(i) = 1, Iµ(i) > 0,∀i ∈ [1,K]
(8)

where I = [0, 0, 1]. (8) is constrained by the non-negativity
of the belief in each cell and the conservation of the total
probability. Due to a trade-off between accuracy and speed,
the squared distance function dist : R3 × R3 → R is defined
as the Euclidean distance, dist2(yk, y

′
k) = (yk−y′k)TQ(yk−

y′k), where yk, y′k ∈ R3, and Q is a weight matrix.
We derive the belief space partition Φ by solving (8)

using the K-means algorithm. To implement the K-means
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algorithm, we start by randomly selecting K cell centroids,
and then use Lloyd iterations to solve the optimization
problem. The Lloyd iteration contains two steps, the first
of which is to assign the points that are closest to a centroid
to that centroid,

cmk = arg min
i

dist(z
(m)
k , µ(i)), (9)

where cmk ∈ [1,K] is the index of the partition that datapoint
z

(m)
k is assigned to. The second step is recomputing the cell

centroid by taking average of all the data points assigned
to this centroid. To guarantee that the constraints in (8) is
satisfied, a normalization term ν is multiplied to the belief
to guarantee the conservation of probability,

µ(i) = ν

∑
k∈[1,n]

∑
m∈[1,M ]

1(cmk = i)z
(m)
k∑

k∈[1,n]

∑
m∈[1,M ]

1(cmk = i)
. (10)

These two steps are repeated until cell membership no longer
changes.

Algorithm 1: Focused finite partition

1 Initialize particles by drawing {r0}Mm=1 i.i.d. from b0;
2 for k = 1 to n do
3 Compute r(m)

k|k−1,m ∈ [1,M ] by propagating the
particles according to system dynamics (2)
given control input being zero and randomly
generated noise {ωi}Mm=1;

4 Compute yk, yk+1, . . . , yn from x̂k, x̂k+1, . . . , x̂n
according to (4) using randomly generated noise
{nm}Mm=1;

5 For each r(i)
k , update weights using (7) ;

6 end
7 Denote M evaluation datapoints as

z
(m)
k = [(r

(m)
k )ᵀ, w

(m)
k ]ᵀ, m ∈ [1,M ];

8 Z = ∪k∈[1,n] ∪m∈[1,M ] z
(m)
k ;

9 Randomly initialize cluster centroids µ(i);
10 while not converges do
11 For z ∈ Z, assign z to the centroid that is closest

to it using (9) ;
12 Recompute all centroid using (10) ;
13 end
14 For all i ∈ [1,K], Ri = ∪m ∪k

(
1{cmk = i}r(m)

k

)
;

IV. IDENTIFICATION OF THE PARTITION BELIEF
DYNAMICS

Leveraging the solution to Problem 2.1 designed in Section
III, we now discuss our solution to Problem 2.2. Given the
finite dimension partition, we project the infinite dimensional
belief dynamics onto the partitioned cells to find the pa-
rameters of the Markov chain transition model in (5). Each
element in column i and row j of the transition matrix
represents the probability that the system state starts from
cell Rj , and transits to cell Ri at the next time step,

T (ij)(u) = Pr(xk ∈ Ri|xk−1 ∈ Rj , u). (11)

To evaluate (11), we assume that we are provided a set
of trajectories r(i)

k drawn from a distribution of initial dis-
tribution of x0 and simulated forward using (2) and (4),
and the control input u for simulating the trajectories fixed
throughout. The particle weights are updated by (7). We use
the Ulam-Galerkin method [21] to compute the transition
matrix, which estimates (11) by the number and the weights
of particles moving from one cell to another,

T (ij)(u) =
1

n

n∑
k=1

[ M∑
m=1

w
(m)
k 1

(
r

(m)
k ∈ Ri)1

(
r

(m)
k−1 ∈ Rj

)
M∑
m=1

w
(m)
k−11(r

(m)
k−1 ∈ Rj)

]
.

(12)
The denominator represents the total mass of particles inside
the cellRj , while the numerator is the mass transported from
cell Rj to Ri at the next time step.

Algorithm 2: Identification of partitioned belief dy-
namics

1 for ui ∈ Uxy do
2 Initialize particles by drawing {r(m)

0 }Mm=1 i.i.d.
from b0 ;

3 for k = 1 to n do
4 Compute r(m)

k|k−1, m ∈ [1,M ] by propagating
the particles according to (2) given control
input being fixed to ui throughout, and
randomly generated noise {ωm}Mm=1;

5 Compute yk, yk+1, . . . , yn from
x̂k, x̂k+1, . . . , x̂n according to (4) using
randomly generated noise {nm}Mm=1;

6 Update weights for particles using (7);
7 end
8 for i ∈ [1,K] do
9 for j ∈ [1,K] do

10 Compute the transition probability from
cell j to i using (12);

11 end
12 end
13 end

We find the initial condition of (5) by projecting the initial
distribution of states, denoted as ρ0 onto the partitions. Let
φ(x) ∈ RK denote the spatial basis function we find through
partitioning, φ(x) =

[
1(x ∈ R1), . . . ,1(x ∈ RK)

]ᵀ
. Since

the initial belief is a continuous distribution, a set of sample
points x ∈ R2 is selected, and the parameters can be found by
minimizing the difference between the parameterized belief
and the initial belief on these sample points,

Θ0 = arg min
Θ

∑
x∈R2

(ρ0(x)−ΘTφ(x))2. (13)

V. IDENTIFICATION OF THE PREDICATE TRANSITIONS

Having obtained partitions Φ and transition model T by
solving Problems 2.1 and 2.2, we now discuss the solution
to Problem 2.3. In this section, we define and describe
the mapping function Γ to construct current set of active
predicates sk given the distribution over Φ, Θk which will

8248



allow us to solve the planning problems. We design Γ to
evaluate each predicate according to the following rules

Γ(Bel,Θk) =


1, Bel = BelHi, Θ

(i)
k > pH

1, Bel = BelMi, pH ≥ Θ
(i)
k > pL

1, Bel = BelLi, pL ≥ Θ
(i)
k

0, otherwise.

(14)

Here, parameters pH and pL are threshold values to discretize
the belief values. These values can be chosen to reflect
the confidence precision necessary for satisfying desired
planning goals. In this work, we choose pH = 0.7 and pL =
0.2. Applying (14) allows us to identify K active predicates
that denote the confidence over each partition. We can then
evaluate the predicates in S at each iteration by enumerating
over BelHj , BelMj , BelLj for j ∈ {1, . . . ,K} with Γ and
retaining a memory of the previous AUV depth for predicates
at_surf , and at_depth as we assume depth change actions
are deterministic. Let sxy,k = {s|Γ(s,Θk) = 1} be the
current set of active predicates computed by enumerating
over each BelHj , BelMj , BelLj for j ∈ {1, . . . ,K} and let
sz,k ∈ {at_surf, at_depth}. Then, the total current set of
active predicates is defined as sk = sxy,k ∪ sz,k.

From any sk, we define the action set to be the finite set
of inputs U = Uxy∪Uz , where the effects of Uxy are defined
by the identified transition dynamics T and the effects of Uz
are defined as an information gathering action for position
estimation. Let jmax = arg max Θ(j) be the index of the
partition with the highest probability. For planning purposes,
we assume that the effects of taking surfacing action u9 on
the distribution Θ are

Θ(i) =

{
1, i = jmax

0, otherwise
(15)

while taking diving action u10 has no effect on Θ. However,
we assume that move actions may only be performed at
depth, yielding a precondition function

Pre(ai, sk) =

{
1, if sz,k = at_depth, i < 9

0, if sz,k = at_surf, i < 9
. (16)

Having defined (14), (15), and (16), we can construct a
planning problem Σ = (S,U , γ, s0, g) where g ∈ S is a
set of desired predicates to activate, and γ : S × U → S is
a predicate transition function that determines the effects of
taking an action u from a state s.

We can now construct γ based on a graph search using (14)
to construct branches based on the action set U where each
branch cost is a function dependent on Θk and uk, and using
(16) to prune branches according to whether they satisfy the
desired preconditions. In this work, we solve this planning
problems using a HTN planner to handle the preconditions
of taking actions while using an A* planner to find the cost-
optimal sequence of actions. An example of one iteration of
the graph search is shown in Figure 1.

Fig. 1. Example of the belief state evolution over one iteration. By taking
different control actions, three different Θ distributions are possible. The
active predicate set is shown by the color: green, yellow, red for BelH,
BelM, and BelL, respectively.

VI. SIMULATION RESULTS

In this section, we provide the results of the implementa-
tion of the symbolic dynamics approximation and path plan-
ning methods in a simulated experiment of AUV deployment.
Performance of the proposed methods is compared with the
Generalized Cell Mapping algorithm.

Fig. 2. Left: Setup of the simulation domain. The contour represents initial
distribution of the state variable, and the pink region represents the terminal
set. Beacons are represented as the black hexagram while the detection
range is marked by the dashed curve. A snapshot of flow field is described
by the blue arrows. Right: Actual vehicle trajectory under the influence of
process noise and flow field. The belief state evolution is described by the
simulated particle trajectories. Red arrows represent the sequence of actions
designed by the HTN planning algorithm. At the 7th surfacing (the red
dot), surfacing and diving actions are injected into the control sequence to
satisfy the constraint on variance of the belief state.

The beacon placement and detection range setup is shown
at left on Figure 2, and the parameters in the simulation setup
is shown in Table I. The initial distribution of vehicle position
is set as a Gaussian distribution, and the terminal constraint
of the planning problem is set as BelH1 is true, meaning that
the vehicle has high probability of being inside cell one. As
the vehicle travels underwater, the belief will approach the
uniform distribution, which contains no information of the
actual vehicle position. Hence, we impose one constraint that
the belief should concentrate in a small number of cells. If
this constraint is violated, the vehicle is forced to surface to
receive position estimation. We aim to find the minimum-
time path. Hence the stage cost for the moving action is set
as one. The surface/diving action is associated with a higher
stage cost to penalize frequent surfacing.

Figure 3 shows partition of the belief space. The choice
of the number of clusters is a trade-off between numerical
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TABLE I
SIMULATION SETUP

Flow mag., angular vel. A = 0.3, ω = π/2, ε = 0.01
Vehicle speed V = 1

Initial condition ρ0 = N
( [−3

2

]
,

[
0.1 0
0 0.1

] )
Terminal condition BelH1 is true

Constraint on state var.
K∑
i=1

BelLi > 6

Surf. and div. cost 5
Move action cost 1

accuracy and computational cost. We choose to partition the
belief space into 20 cells, based on the “Elbow criterion"
[22]. Boundaries of cells are smoothed into straight lines
using the Least mean square method.

Fig. 3. Left: Partitioned cells in belief space. The colored squares represent
datapoint position in Monte Carlo simulation. Squares with same color
belong to the same partition. Right: Transition model of the parameterized
belief state when u = 0.

Given the transition model, we use HTN to perform
planning in symbolic space. Fig. 2, right shows the opti-
mal control sequence computed by the proposed planning
algorithm. The vehicle takes advantage of the flow speed,
and goes along the streamline of the flow field, in order to
move towards the target position in maximum total speed,
and achieve minimum travel time. At the 7th timestep, the
constraint on state variance is not satisfied. Hence the HTN
planner injects a surfacing action to the control sequence, so
that the state variance is reset, and the constraint is satisfied.

To evaluate performance of the proposed algorithm, we
compare our partition-based Markov chain approximation
method to the generalized cell mapping method (GCM)
[4]. The GCM method discretizes the belief space into
rectangular grid cells, and uses the Ulam-Galerkin method
to estimate the belief dynamics. Given the identified belief
dynamics from both GCM and the proposed method, we
use the HTN planning to solve for the optimal sequence
of actions. The simulation comparison on belief dynamics
identification, and symbolic planning is shown in Table
II. The first and the second column show the number of
predicates. Mod. time refers to the run time the two methods

TABLE II
COMPARISON BETWEEN GCM AND THE PROPOSED ALGORITHM

Generalized cell mapping
Grid size # of Pre. Mod. time Plan time

10× 10× 2 600 14.2845 s 5.9873 s
100× 100× 2 6e4 15.5396 54.3957 s
150× 150× 2 1.35e5 16.4289 s 154.368 s

Proposed solution
Grid size # of Pre. Mod. time Plan time

10× 10× 2 120 18.3886 3.9702 s
50× 50× 2 120 19.845 s 4.7825 s

100× 100× 2 120 20.5480 s 4.9796 s

construct the Markov chain model of the belief state. Plan
time describes the time to solve the symbolic planning
problem. As shown in the table, for the two methods,
computation time for identifying the belief dynamics does
not have significant difference. GCM results in slightly less
computation time, since the GCM uses the grid cells to
partition the belief space, while the proposed algorithm takes
an extra step to compute the optimal partition. However,
the method proposed here significantly reduces the compu-
tational cost of symbolic planning. The main reason is that
when grid size increases, the number of predicates will grow
correspondingly. The large number of predicates introduces
significant computation cost in evaluating the constraints in
the symbolic planning problem. Therefore, the simulation
comparison shows that by introducing the belief space parti-
tion, we significantly reduce the number of predicates, which
reduces the total computation time of solving a POMDP
problem. The difference of computation time for planning
between the two algorithms can be explained by the worst
case running time. Suppose the discretized grid cell in the x-
y plane is N×N , the worst case running time of running A*
HTN planner with GCM is O(2×3N

2

(N2 log 3+log 2)) [23].
Suppose we partition the x-y plane into M cells, the worst
case running time of A* HTN planner with belief abstraction
is O(2 × 3M (M log 3 + log 2)), which is less than GCM if
M < N2, meaning that we partition the domain into less
number of cells compared with the grid based discretization.

VII. CONCLUSION

In this paper, we propose a symbolic representation and
symbol space planning method for a general POMDP prob-
lem. Such symbolic representations allows for efficient ab-
straction of complex tasks of the infinite dimensional belief
state. Given the symbol space abstraction, we leverage HTN
and A* planning to find cost-optimal trajectories.
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